forked from Nadavc220/SemanticSegmentationInArtPaintings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_adv.py
385 lines (315 loc) · 15.7 KB
/
train_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import argparse
import os
import datetime
import logging
import time
import math
import numpy as np
from collections import OrderedDict
import torch
import torch.nn.functional as F
from core.configs import cfg
from core.datasets import build_dataset
from core.models import build_model, build_adversarial_discriminator, build_feature_extractor, build_classifier
from core.solver import adjust_learning_rate
from core.utils.misc import mkdir, AverageMeter, intersectionAndUnionGPU
from core.utils.logger import setup_logger
from core.utils.metric_logger import MetricLogger
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "")] = value
return stripped_state_dict
def soft_label_cross_entropy(pred, soft_label, pixel_weights=None):
N, C, H, W = pred.shape
loss = -soft_label.float()*F.log_softmax(pred, dim=1)
if pixel_weights is None:
return torch.mean(torch.sum(loss, dim=1))
return torch.mean(pixel_weights*torch.sum(loss, dim=1))
def train(cfg, local_rank, distributed):
logger = logging.getLogger("STEP2.trainer")
logger.info("Start training")
feature_extractor = build_feature_extractor(cfg, adv=True)
device = torch.device(cfg.MODEL.DEVICE)
feature_extractor.to(device)
classifier = build_classifier(cfg)
classifier.to(device)
model_D = build_adversarial_discriminator(cfg)
model_D.to(device)
if local_rank==0:
print(feature_extractor)
print(model_D)
batch_size = cfg.SOLVER.BATCH_SIZE//2
if distributed:
pg1 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
batch_size = int(cfg.SOLVER.BATCH_SIZE / torch.distributed.get_world_size())//2
if not cfg.MODEL.FREEZE_BN:
feature_extractor = torch.nn.SyncBatchNorm.convert_sync_batchnorm(feature_extractor)
feature_extractor = torch.nn.parallel.DistributedDataParallel(
feature_extractor, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg1
)
pg2 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
classifier = torch.nn.parallel.DistributedDataParallel(
classifier, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg2
)
pg3 = torch.distributed.new_group(range(torch.distributed.get_world_size()))
model_D = torch.nn.parallel.DistributedDataParallel(
model_D, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True, process_group=pg3
)
torch.autograd.set_detect_anomaly(True)
torch.distributed.barrier()
optimizer_fea = torch.optim.SGD(feature_extractor.parameters(), lr=cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, weight_decay=cfg.SOLVER.WEIGHT_DECAY)
optimizer_fea.zero_grad()
optimizer_cls = torch.optim.SGD(classifier.parameters(), lr=cfg.SOLVER.BASE_LR*10, momentum=cfg.SOLVER.MOMENTUM, weight_decay=cfg.SOLVER.WEIGHT_DECAY)
optimizer_cls.zero_grad()
optimizer_D = torch.optim.Adam(model_D.parameters(), lr=cfg.SOLVER.BASE_LR_D, betas=(0.9, 0.99))
optimizer_D.zero_grad()
output_dir = cfg.OUTPUT_DIR
save_to_disk = local_rank == 0
start_epoch = 0
iteration = 0
if cfg.resume:
logger.info("Loading checkpoint from {}".format(cfg.resume))
checkpoint = torch.load(cfg.resume, map_location=torch.device('cpu'))
model_weights = checkpoint['feature_extractor'] if distributed else strip_prefix_if_present(checkpoint['feature_extractor'], 'module.')
feature_extractor.load_state_dict(model_weights)
classifier_weights = checkpoint['classifier'] if distributed else strip_prefix_if_present(checkpoint['classifier'], 'module.')
classifier.load_state_dict(classifier_weights)
if "model_D" in checkpoint:
logger.info("Loading model_D from {}".format(cfg.resume))
model_D_weights = checkpoint['model_D'] if distributed else strip_prefix_if_present(checkpoint['model_D'], 'module.')
model_D.load_state_dict(model_D_weights)
# if "optimizer_fea" in checkpoint:
# logger.info("Loading optimizer_fea from {}".format(cfg.resume))
# optimizer_fea.load_state_dict(checkpoint['optimizer_fea'])
# if "optimizer_cls" in checkpoint:
# logger.info("Loading optimizer_cls from {}".format(cfg.resume))
# optimizer_cls.load_state_dict(checkpoint['optimizer_cls'])
# if "optimizer_D" in checkpoint:
# logger.info("Loading optimizer_D from {}".format(cfg.resume))
# optimizer_D.load_state_dict(checkpoint['optimizer_D'])
# if "iteration" in checkpoint:
# iteration = checkpoint['iteration']
src_train_data = build_dataset(cfg, mode='train', is_source=True)
tgt_train_data = build_dataset(cfg, mode='train', is_source=False)
if distributed:
src_train_sampler = torch.utils.data.distributed.DistributedSampler(src_train_data)
tgt_train_sampler = torch.utils.data.distributed.DistributedSampler(tgt_train_data)
else:
src_train_sampler = None
tgt_train_sampler = None
src_train_loader = torch.utils.data.DataLoader(src_train_data, batch_size=batch_size, shuffle=(src_train_sampler is None), num_workers=4, pin_memory=True, sampler=src_train_sampler, drop_last=True)
tgt_train_loader = torch.utils.data.DataLoader(tgt_train_data, batch_size=batch_size, shuffle=(tgt_train_sampler is None), num_workers=4, pin_memory=True, sampler=tgt_train_sampler, drop_last=True)
criterion = torch.nn.CrossEntropyLoss(ignore_index=255)
bce_loss = torch.nn.BCELoss(reduction='none')
max_iters = cfg.SOLVER.MAX_ITER
source_label = 0
target_label = 1
logger.info("Start training")
meters = MetricLogger(delimiter=" ")
feature_extractor.train()
classifier.train()
model_D.train()
start_training_time = time.time()
end = time.time()
for i, ((src_input, src_label, src_name), (tgt_input, _, _)) in enumerate(zip(src_train_loader, tgt_train_loader)):
data_time = time.time() - end
current_lr = adjust_learning_rate(cfg.SOLVER.LR_METHOD, cfg.SOLVER.BASE_LR, iteration, max_iters, power=cfg.SOLVER.LR_POWER)
current_lr_D = adjust_learning_rate(cfg.SOLVER.LR_METHOD, cfg.SOLVER.BASE_LR_D, iteration, max_iters, power=cfg.SOLVER.LR_POWER)
for index in range(len(optimizer_fea.param_groups)):
optimizer_fea.param_groups[index]['lr'] = current_lr
for index in range(len(optimizer_cls.param_groups)):
optimizer_cls.param_groups[index]['lr'] = current_lr*10
for index in range(len(optimizer_D.param_groups)):
optimizer_D.param_groups[index]['lr'] = current_lr_D
optimizer_fea.zero_grad()
optimizer_cls.zero_grad()
optimizer_D.zero_grad()
src_input = src_input.cuda(non_blocking=True)
src_label = src_label.cuda(non_blocking=True).long()
tgt_input = tgt_input.cuda(non_blocking=True)
src_size = src_input.shape[-2:]
tgt_size = tgt_input.shape[-2:]
inp = torch.cat([src_input, F.interpolate(tgt_input.detach(), src_size)])
# try:
src_fea = feature_extractor(inp)[:batch_size]
src_pred = classifier(src_fea, src_size)
temperature = 1.8
src_pred = src_pred.div(temperature)
loss_seg = criterion(src_pred, src_label)
loss_seg.backward()
# generate soft labels
src_soft_label = F.softmax(src_pred, dim=1).detach()
src_soft_label[src_soft_label>0.9] = 0.9
tgt_fea = feature_extractor(tgt_input)
tgt_pred = classifier(tgt_fea, tgt_size)
tgt_pred = tgt_pred.div(temperature)
tgt_soft_label = F.softmax(tgt_pred, dim=1)
tgt_soft_label = tgt_soft_label.detach()
tgt_soft_label[tgt_soft_label>0.9] = 0.9
tgt_D_pred = model_D(tgt_fea, tgt_size)
loss_adv_tgt = 0.001*soft_label_cross_entropy(tgt_D_pred, torch.cat((tgt_soft_label, torch.zeros_like(tgt_soft_label)), dim=1))
loss_adv_tgt.backward()
optimizer_fea.step()
optimizer_cls.step()
optimizer_D.zero_grad()
# torch.distributed.barrier()
src_D_pred = model_D(src_fea.detach(), src_size)
loss_D_src = 0.5*soft_label_cross_entropy(src_D_pred, torch.cat((src_soft_label, torch.zeros_like(src_soft_label)), dim=1))
loss_D_src.backward()
tgt_D_pred = model_D(tgt_fea.detach(), tgt_size)
loss_D_tgt = 0.5*soft_label_cross_entropy(tgt_D_pred, torch.cat((torch.zeros_like(tgt_soft_label), tgt_soft_label), dim=1))
loss_D_tgt.backward()
# torch.distributed.barrier()
optimizer_D.step()
meters.update(loss_seg=loss_seg.item())
meters.update(loss_adv_tgt=loss_adv_tgt.item())
meters.update(loss_D=(loss_D_src.item()+loss_D_tgt.item()))
meters.update(loss_D_src=loss_D_src.item())
meters.update(loss_D_tgt=loss_D_tgt.item())
iteration = iteration + 1
n = src_input.size(0)
batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time)
eta_seconds = meters.time.global_avg * (cfg.SOLVER.STOP_ITER - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % 20 == 0 or iteration == max_iters:
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer_fea.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if (iteration == cfg.SOLVER.MAX_ITER or iteration % cfg.SOLVER.CHECKPOINT_PERIOD==0) and save_to_disk:
filename = os.path.join(output_dir, "model_iter{:06d}.pth".format(iteration))
torch.save({'iteration': iteration, 'feature_extractor': feature_extractor.state_dict(), 'classifier':classifier.state_dict(), 'model_D': model_D.state_dict(), 'optimizer_fea': optimizer_fea.state_dict(), 'optimizer_cls': optimizer_cls.state_dict(), 'optimizer_D': optimizer_D.state_dict()}, filename)
if iteration == cfg.SOLVER.MAX_ITER:
break
if iteration == cfg.SOLVER.STOP_ITER:
break
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (cfg.SOLVER.MAX_ITER)
)
)
return feature_extractor, classifier
def run_test(cfg, feature_extractor, classifier, local_rank, distributed):
logger = logging.getLogger("STEP2.tester")
if local_rank==0:
logger.info('>>>>>>>>>>>>>>>> Start Testing >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
target_meter = AverageMeter()
if distributed:
feature_extractor, classifier = feature_extractor.module, classifier.module
torch.cuda.empty_cache()
dataset_name = cfg.DATASETS.TEST
if cfg.OUTPUT_DIR:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
test_data = build_dataset(cfg, mode='test', is_source=False)
if distributed:
test_sampler = torch.utils.data.distributed.DistributedSampler(test_data)
else:
test_sampler = None
test_loader = torch.utils.data.DataLoader(test_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True, sampler=test_sampler)
feature_extractor.eval()
classifier.eval()
end = time.time()
with torch.no_grad():
for i, (x, y, _) in enumerate(test_loader):
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True).long()
size = y.shape[-2:]
output = classifier(feature_extractor(x), size)
output = output.max(1)[1]
intersection, union, target = intersectionAndUnionGPU(output, y, cfg.MODEL.NUM_CLASSES, cfg.INPUT.IGNORE_LABEL)
if distributed:
torch.distributed.all_reduce(intersection), torch.distributed.all_reduce(union), torch.distributed.all_reduce(target)
intersection, union, target = intersection.cpu().numpy(), union.cpu().numpy(), target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(target)
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
batch_time.update(time.time() - end)
end = time.time()
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10)
mIoU = np.mean(iou_class)
mAcc = np.mean(accuracy_class)
allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10)
if local_rank==0:
logger.info('Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc))
for i in range(cfg.MODEL.NUM_CLASSES):
logger.info('Class_{} {} Result: iou/accuracy {:.4f}/{:.4f}.'.format(i, test_data.trainid2name[i], iou_class[i], accuracy_class[i]))
def main():
parser = argparse.ArgumentParser(description="PyTorch Semantic Segmentation Training")
parser.add_argument("-cfg",
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("STEP2", output_dir, args.local_rank)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
fea, cls = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, fea, cls, args.local_rank, args.distributed)
if __name__ == "__main__":
main()