Skip to content

SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.

License

Notifications You must be signed in to change notification settings

Agora-Lab-AI/SETINet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SETINet: AI-Driven Framework for Extraterrestrial Signal Detection

Join our Discord Subscribe on YouTube Connect on LinkedIn Follow on X.com

Python 3.8+ PyTorch License: MIT arXiv

Overview

SETINet is a state-of-the-art framework for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence. This project implements a deep learning approach to process and analyze radio telescope data, utilizing convolutional neural networks optimized for signal detection in spectral data.

Key Features

  • 🔭 Automated data collection from multiple radio telescope sources
  • 🤖 Deep learning-based signal detection and classification
  • 📊 Real-time data processing and analysis pipeline
  • 📈 Comprehensive visualization and monitoring tools
  • 🔍 Advanced signal processing and noise reduction
  • 💾 Efficient data management and model checkpointing

System Architecture

graph TD
    subgraph Data Pipeline
        A[Astronomical Data Sources] --> B[DataFetcher]
        B --> C[Raw Data Storage]
        C --> D[SignalProcessor]
        D --> E[Processed Data]
    end

    subgraph ML Pipeline
        E --> F[SETIDataset]
        F --> G[DataLoader]
        G --> H[SETINet Model]
    end

    subgraph Training Pipeline
        H --> I[Trainer]
        I --> J[Model Checkpoints]
        I --> K[TensorBoard Logs]
        I --> L[Training Metrics]
    end

    subgraph Model Architecture
        M[Input Layer] --> N[Conv2D + ReLU + MaxPool]
        N --> O[Conv2D + ReLU + MaxPool]
        O --> P[Conv2D + ReLU + MaxPool]
        P --> Q[Flatten]
        Q --> R[Dense + ReLU]
        R --> S[Dropout]
        S --> T[Output Layer]
    end
Loading

Data Pipeline

graph TD
    A[Astronomical Data Sources] --> B[DataFetcher]
    B --> C[Raw Data Storage]
    C --> D[SignalProcessor]
    D --> E[Processed Data]
Loading

Model Architecture

The SETINet model employs a deep convolutional neural network architecture optimized for spectral data analysis:

Input Layer (1 x 1024 x 1024)
    │
    ▼
Conv2D(32) + ReLU + MaxPool
    │
    ▼
Conv2D(64) + ReLU + MaxPool
    │
    ▼
Conv2D(128) + ReLU + MaxPool
    │
    ▼
Flatten
    │
    ▼
Dense(512) + ReLU
    │
    ▼
Dropout(0.5)
    │
    ▼
Output Layer (2)

Installation

Prerequisites

  • Python 3.8+
  • CUDA-capable GPU (recommended)
  • 16GB+ RAM

Setup

  1. Clone the repository:
git clone https://github.com/Agora-Lab-AI/SETINet.git
cd SETINet
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Usage

python main.py

Contributing

We welcome contributions! Please see our CONTRIBUTING.md for guidelines.

Citation

If you use SETINet in your research, please cite our paper:

@article{setinet2024,
  title={SETINet: Deep Learning Framework for Extraterrestrial Signal Detection},
  author={Kye Gomez},
  journal={arXiv preprint arXiv:2024.xxxxx},
  year={2024}
}

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Breakthrough Listen Initiative for providing open-source data
  • Green Bank Observatory for radio telescope data access
  • The SETI research community for valuable feedback and contributions

## 📬 Contact


Want Real-Time Assistance?

Book a call with here for real-time assistance:


⭐ Star us on GitHub if this project helped you!

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages