This repository is the official implementation of methods from the paper Graph Attention Networks for Scheduling in Cloud Manufacturing and Logistics.
To install dependencies, run
pip install -r requirements.txt
To run experiments on the baselines and the GNN model, run the following command:
python main.py
The results will be stored in the results.log
file.
To train the GNN models from scratch, run the following command:
python train.py
The results will be stored in the training_gnn
folder.
The total cost (the lower the better) of solutions to the problems in the LMSC dataset.
Tasks-Operations- Enterprises |
No. | Optimal solution |
Random solution |
Greedy algorithm |
Genetic algorithm |
GNN (Ours) |
---|---|---|---|---|---|---|
5-5-5 | 1 | 2648.63 | 3484.19 | 3495.44 | 2648.63 | 2911.75 |
2 | 5944.42 | 8704.79 | 8266.23 | 5944.42 | 5944.42 | |
3 | 6653.88 | 8896.25 | 8868.77 | 6653.88 | 6653.88 | |
5-10-10 | 1 | 5086.08 | 12599.87 | 6325.05 | 5145.03 | 5192.80 |
2 | 7352.66 | 18310.91 | 10974.05 | 7409.04 | 7391.84 | |
3 | 7652.32 | 19556.74 | 12521.69 | 7714.85 | 7652.32 | |
10-10-10 | 1 | 12221.76 | 33980.4 | 14849.09 | 12656.17 | 15331.90 |
2 | 14275.53 | 39574.01 | 21835.97 | 14322.24 | 14275.53 | |
3 | 14200.75 | 40062.74 | 23082.48 | 14303.49 | 14200.75 | |
5-10-20 | 1 | 4252.04 | 11542.44 | 6091.69 | 4289.83 | 4613.68 |
2 | 5497.29 | 18336.67 | 9377.16 | 5543.21 | 5536.48 | |
3 | 5866.18 | 20916.08 | 9414.35 | 5925.18 | 5866.18 | |
5-20-10 | 1 | 13512.96 | 36326.45 | 15446.19 | 13805.60 | 14222.25 |
2 | 15803.26 | 42108.59 | 19195.71 | 16137.08 | 15982.76 | |
3 | 16703.56 | 45502.72 | 20396.13 | 17243.44 | 17203.44 | |
5-20-20 | 1 | 11392.82 | 34663.67 | 14002.05 | 11875.55 | 13629.40 |
2 | 13045.16 | 42312.09 | 17038.35 | 13580.50 | 14853.80 | |
3 | 14366.02 | 45445.61 | 18597.85 | 14899.99 | 16339.31 |
Please note that results may differ slightly from the paper due to randomness.