Skip to content

Commit

Permalink
fix vLLM/docker issues (intel-analytics#11348)
Browse files Browse the repository at this point in the history
* fix

* fix

* ffix
  • Loading branch information
gc-fu authored Jun 18, 2024
1 parent 83082e5 commit c9b4cad
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 5 deletions.
3 changes: 2 additions & 1 deletion docker/llm/serving/xpu/docker/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@ RUN apt-get update && \
pip install outlines==0.0.34 --no-deps && \
pip install interegular cloudpickle diskcache joblib lark nest-asyncio numba scipy && \
# For Qwen series models support
pip install transformers_stream_generator einops tiktoken
pip install transformers_stream_generator einops tiktoken && \
pip uninstall -y deepspeed

COPY ./vllm_offline_inference.py /llm/
COPY ./payload-1024.lua /llm/
Expand Down
2 changes: 1 addition & 1 deletion docker/llm/serving/xpu/docker/benchmark_vllm_throughput.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,7 @@ def main(args: argparse.Namespace):
parser.add_argument(
"--load-in-low-bit",
type=str,
choices=["sym_int4", "fp8", "fp16"],
choices=["sym_int4", "fp8", "fp8_e4m3", "fp16", "fp6"],
default="sym_int4",
help="Low-bit format quantization with IPEX-LLM")

Expand Down
7 changes: 4 additions & 3 deletions docs/readthedocs/source/doc/LLM/Quickstart/vLLM_quickstart.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ To run offline inference using vLLM for a quick impression, use the following ex
.. note::
Please modify the MODEL_PATH in offline_inference.py to use your chosen model.
You can try modify load_in_low_bit to different values in **[sym_int4, fp8, fp16]** to use different quantization dtype.
You can try modify load_in_low_bit to different values in **[sym_int4, fp6, fp8, fp8_e4m3, fp16]** to use different quantization dtype.
```

```bash
Expand Down Expand Up @@ -111,6 +111,7 @@ served_model_name="YOUR_MODEL_NAME"
# --max-model-len, --max-num-batched-tokens, --max-num-seqs
# to acquire the best performance

# Change value --load-in-low-bit to [fp6, fp8, fp8_e4m3, fp16] to use different low-bit formats
python -m ipex_llm.vllm.xpu.entrypoints.openai.api_server \
--served-model-name $served_model_name \
--port 8000 \
Expand Down Expand Up @@ -245,7 +246,7 @@ wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/docker/llm/

export MODEL="YOUR_MODEL"

# You can change load-in-low-bit from values in [sym_int4, fp8, fp16]
# You can change load-in-low-bit from values in [sym_int4, fp6, fp8, fp8_e4m3, fp16]

python3 ./benchmark_throughput.py \
--backend vllm \
Expand All @@ -272,4 +273,4 @@ The following figure shows the result of benchmarking `Llama-2-7b-chat-hf` using
.. tip::
To find the best config that fits your workload, you may need to start the service and use tools like `wrk` or `jmeter` to perform a stress tests.
```
```

0 comments on commit c9b4cad

Please sign in to comment.