Skip to content

Commit

Permalink
Multiple Qubits Clifford Gate (quantumlib#4791)
Browse files Browse the repository at this point in the history
Add initial Clifford Gate with multiple qubits. Compared with SingleQubitCliffordGate, it has fewer functionalities since we cannot enumerate all of them with PauliGates and several special single qubit properties like Bloch rotation no longer exist. Anyway, it provides several basic interactions:
1. It uses Clifford tableau as underlying data representation (different from the state representation).
2. It can be constructed from a tableau or list of operations (`_has_stabilizer_effect_` only). All Clifford gates can be built through \{S, H, CNOT\}, so we can construct any Clifford Gate from the list of operations. We just cannot pre-define it.
3. Decomposing into several basic operations.
4. Get unitary matrix through decomposing (we cannot do this in a reverse way from unitary to Clifford gate :( ).
5. Know how to interact with ActOnCliffordTableauArgs, i.e. it should be able to use with CliffordTableau simulator (Looks like we don't have that in cirq yet?  @daxfohl will add that? see quantumlib#4639 and quantumlib#4748.).

This PR is part of efforts for quantumlib#3639. Context: this PR doesn't introduce any new algorithms but the key methods are already implemented in quantumlib#4183 and quantumlib#4096.
  • Loading branch information
BichengYing authored and 95-martin-orion committed Mar 2, 2022
1 parent 6736c7d commit 1626009
Show file tree
Hide file tree
Showing 7 changed files with 638 additions and 3 deletions.
3 changes: 2 additions & 1 deletion cirq-core/cirq/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,7 @@
CCNOT,
CCNotPowGate,
ClassicallyControlledOperation,
CliffordGate,
CNOT,
CNotPowGate,
ControlledGate,
Expand Down Expand Up @@ -707,7 +708,7 @@
contrib,
)

# deprecate cirq.ops.moment and related attributes
# deprecate cirq.ops and related attributes

from cirq import _compat

Expand Down
1 change: 1 addition & 0 deletions cirq-core/cirq/json_resolver_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def _parallel_gate_op(gate, qubits):
'CircuitOperation': cirq.CircuitOperation,
'ClassicallyControlledOperation': cirq.ClassicallyControlledOperation,
'ClassicalDataDictionaryStore': cirq.ClassicalDataDictionaryStore,
'CliffordGate': cirq.CliffordGate,
'CliffordState': cirq.CliffordState,
'CliffordTableau': cirq.CliffordTableau,
'CNotPowGate': cirq.CNotPowGate,
Expand Down
1 change: 1 addition & 0 deletions cirq-core/cirq/ops/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
)

from cirq.ops.clifford_gate import (
CliffordGate,
PauliTransform,
SingleQubitCliffordGate,
)
Expand Down
311 changes: 309 additions & 2 deletions cirq-core/cirq/ops/clifford_gate.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,19 +12,44 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, cast, Dict, NamedTuple, Optional, Sequence, Tuple, TYPE_CHECKING, Union
from typing import (
Any,
cast,
Dict,
List,
NamedTuple,
Optional,
Sequence,
Tuple,
TYPE_CHECKING,
Union,
)

import numpy as np

from cirq import protocols, value, linalg, qis
from cirq._doc import document
from cirq.ops import common_gates, gate_features, named_qubit, pauli_gates, phased_x_z_gate
from cirq._import import LazyLoader
from cirq.ops import (
common_gates,
gate_features,
identity,
named_qubit,
raw_types,
pauli_gates,
phased_x_z_gate,
)
from cirq.ops.pauli_gates import Pauli
from cirq.type_workarounds import NotImplementedType

if TYPE_CHECKING:
import cirq

# Lazy imports to break circular dependencies.
devices = LazyLoader("devices", globals(), "cirq.devices")
sim = LazyLoader("sim", globals(), "cirq.sim")
transformers = LazyLoader("transformers", globals(), "cirq.transformers")

PauliTransform = NamedTuple('PauliTransform', [('to', Pauli), ('flip', bool)])
document(PauliTransform, """+X, -X, +Y, -Y, +Z, or -Z.""")

Expand Down Expand Up @@ -571,3 +596,285 @@ def _circuit_diagram_info_(
SingleQubitCliffordGate.Z: SingleQubitCliffordGate.Z_nsqrt,
},
}


class CommonCliffordGateMetaClass(value.ABCMetaImplementAnyOneOf):
"""A metaclass used to lazy initialize several common Clifford Gate as class attributes."""

@property
def I(cls):
if getattr(cls, '_I', None) is None:
cls._I = cls._generate_clifford_from_known_gate(1, identity.I)
return cls._I

@property
def X(cls):
if getattr(cls, '_X', None) is None:
cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.X)
return cls._Z

@property
def Y(cls):
if getattr(cls, '_X', None) is None:
cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.Y)
return cls._Z

@property
def Z(cls):
if getattr(cls, '_X', None) is None:
cls._Z = cls._generate_clifford_from_known_gate(1, pauli_gates.Z)
return cls._Z

@property
def H(cls):
if getattr(cls, '_H', None) is None:
cls._H = cls._generate_clifford_from_known_gate(1, common_gates.H)
return cls._H

@property
def S(cls):
if getattr(cls, '_S', None) is None:
cls._S = cls._generate_clifford_from_known_gate(1, common_gates.S)
return cls._S

@property
def CNOT(cls):
if getattr(cls, '_CNOT', None) is None:
cls._CNOT = cls._generate_clifford_from_known_gate(2, common_gates.CNOT)
return cls._CNOT

@property
def CZ(cls):
if getattr(cls, '_CZ', None) is None:
cls._CZ = cls._generate_clifford_from_known_gate(2, common_gates.CZ)
return cls._CZ

@property
def SWAP(cls):
if getattr(cls, '_SWAP', None) is None:
cls._SWAP = cls._generate_clifford_from_known_gate(2, common_gates.SWAP)
return cls._SWAP


class CommonCliffordGates(metaclass=CommonCliffordGateMetaClass):

# We need to use the lazy initialization of these common gates since they need to use
# cirq.sim, which can not be imported when
@classmethod
def _generate_clifford_from_known_gate(
cls, num_qubits: int, gate: raw_types.Gate
) -> 'CliffordGate':
qubits = devices.LineQubit.range(num_qubits)
t = qis.CliffordTableau(num_qubits=num_qubits)
args = sim.ActOnCliffordTableauArgs(
tableau=t, qubits=qubits, prng=np.random.RandomState(), log_of_measurement_results={}
)

protocols.act_on(gate, args, qubits, allow_decompose=False)
return CliffordGate.from_clifford_tableau(args.tableau)

@classmethod
def from_clifford_tableau(cls, tableau: qis.CliffordTableau) -> 'CliffordGate':
"""Create the CliffordGate instance from Clifford Tableau.
Args:
tableau: A CliffordTableau to define the effect of Clifford Gate applying on
the stabilizer state or Pauli group. The meaning of tableau here is
To X Z sign
from X [ X_x Z_x | r_x ]
from Z [ X_z Z_z | r_z ]
Each row in the Clifford tableau indicates how the transformation of original
Pauli gates to the new gates after applying this Clifford Gate.
Returns:
A CliffordGate instance, which has the transformation defined by
the input tableau.
Raises:
ValueError: When input tableau is wrong type or the tableau does not
satisfy the symplectic property.
"""
if not isinstance(tableau, qis.CliffordTableau):
raise ValueError('Input argument has to be a CliffordTableau instance.')
if not tableau._validate():
raise ValueError('It is not a valid Clifford tableau.')
return CliffordGate(_clifford_tableau=tableau)

@classmethod
def from_op_list(
cls, operations: Sequence[raw_types.Operation], qubit_order: Sequence[raw_types.Qid]
) -> 'CliffordGate':
"""Construct a new Clifford gates from several known operations.
Args:
operations: A list of cirq operations to construct the Clifford gate.
The combination order is the first element in the list applies the transformation
on the stabilizer state first.
qubit_order: Determines how qubits are ordered when decomposite the operations.
Returns:
A CliffordGate instance, which has the transformation on the stabilizer
state equivalent to the composition of operations.
Raises:
ValueError: When one or more operations do not have stabilizer effect.
"""
for op in operations:
if op.gate and op.gate._has_stabilizer_effect_():
continue
raise ValueError(
"Clifford Gate can only be constructed from the "
"operations that has stabilizer effect."
)

base_tableau = qis.CliffordTableau(len(qubit_order))
args = sim.clifford.ActOnCliffordTableauArgs(
tableau=base_tableau,
qubits=qubit_order,
prng=np.random.RandomState(0), # unused
log_of_measurement_results={}, # unused
)
for op in operations:
protocols.act_on(op, args, allow_decompose=True)

return CliffordGate.from_clifford_tableau(args.tableau)

@classmethod
def _from_json_dict_(cls, n, rs, xs, zs, **kwargs):
_clifford_tableau = qis.CliffordTableau._from_json_dict_(
n,
rs,
xs,
zs,
)
return cls(_clifford_tableau=_clifford_tableau)


def _pad_tableau(
clifford_tableau: qis.CliffordTableau, num_qubits_after_padding: int, axes: List[int]
) -> qis.CliffordTableau:
"""Roughly, this function copies self.tabluea into the "identity" matrix."""
# Sanity check
if len(set(axes)) != clifford_tableau.n:
raise ValueError(
"Input axes of padding should match with the number of qubits in the input tableau."
)
if clifford_tableau.n > num_qubits_after_padding:
raise ValueError(
"The number of qubits in the input tableau should not be larger than "
"num_qubits_after_padding."
)

padded_tableau = qis.CliffordTableau(num_qubits_after_padding)
v_index = np.concatenate((np.asarray(axes), num_qubits_after_padding + np.asarray(axes)))

padded_tableau.xs[np.ix_(v_index, axes)] = clifford_tableau.xs
padded_tableau.zs[np.ix_(v_index, axes)] = clifford_tableau.zs
padded_tableau.rs[v_index] = clifford_tableau.rs
return padded_tableau


@value.value_equality
class CliffordGate(raw_types.Gate, CommonCliffordGates):
"""Clifford rotation for N-qubit."""

def __init__(
self,
*,
_clifford_tableau: qis.CliffordTableau,
) -> None:
# We use the Clifford tableau to represent a Clifford gate.
# It is crucial to note that the meaning of tableau here is different
# from the one used to represent a Clifford state (Of course, they are related).
# A) We have to use the full 2n * (2n + 1) matrix
# B) The meaning of tableau here is
# X Z sign
# from X [ X_x Z_x | r_x ]
# from Z [ X_z Z_z | r_z ]
# Each row in the Clifford tableau means the transformation of original Pauli gates.
# For example, take a 2 * (2+1) tableau as example:
# X Z r
# XI [ 1 0 | 1 0 | 0 ]
# IX [ 0 0 | 1 1 | 0 ]
# ZI [ 0 0 | 1 0 | 1 ]
# IZ [ 1 0 | 1 1 | 0 ]
# Take the third row as example: this means the ZI gate after the this gate,
# more precisely the conjugate transformation of ZI by this gate, becomes -ZI.
# (Note the real clifford tableau has to satify the Symplectic property.
# here is just for illustration)
self._clifford_tableau = _clifford_tableau.copy()

@property
def clifford_tableau(self):
return self._clifford_tableau

def _json_dict_(self) -> Dict[str, Any]:
json_dict = self._clifford_tableau._json_dict_()
return json_dict

def _value_equality_values_(self):
return self.clifford_tableau

def _num_qubits_(self):
return self.clifford_tableau.n

def _has_stabilizer_effect_(self) -> Optional[bool]:
# By definition, Clifford Gate should always return True.
return True

def __pow__(self, exponent) -> 'CliffordGate':
if exponent == -1:
return CliffordGate.from_clifford_tableau(self.clifford_tableau.inverse())
if exponent > 0 and int(exponent) == exponent:
base_tableau = self.clifford_tableau.copy()
for _ in range(int(exponent) - 1):
base_tableau = base_tableau.then(self.clifford_tableau)
return CliffordGate.from_clifford_tableau(base_tableau)
if exponent < 0 and int(exponent) == exponent:
base_tableau = self.clifford_tableau.copy()
for _ in range(int(-exponent) - 1):
base_tableau = base_tableau.then(self.clifford_tableau)
return CliffordGate.from_clifford_tableau(base_tableau.inverse())

return NotImplemented

def __repr__(self) -> str:
return f"Clifford Gate with Tableau:\n {self.clifford_tableau._str_full_()}"

def _commutes_(self, other: Any, atol: float) -> Union[bool, NotImplementedType, None]:
# Note even if we assume two gates define the tabluea based on the same qubit order,
# the following approach cannot judge it:
# self.clifford_tableau.then(other.clifford_tableau) == other.clifford_tableau.then(
# self.clifford_tableau
# )
# For example: X.then(Z) and Z.then(X) both return same tableau
# it is because Clifford tableau ignores the global phase information.
return NotImplemented

def _decompose_(self, qubits: Sequence['cirq.Qid']) -> List[raw_types.Operation]:
return transformers.analytical_decompositions.decompose_clifford_tableau_to_operations(
list(qubits), self.clifford_tableau
)

def _act_on_(self, args: 'cirq.ActOnArgs', qubits: Sequence['cirq.Qid']) -> bool:

# Note the computation complexity difference between _decompose_ and _act_on_.
# Suppose this Gate has `m` qubits, args has `n` qubits, and the decomposition of
# this operation into `k` operations:
# 1. Direct act_on is O(n^3) -- two matrices multiplication
# 2. Decomposition is O(m^3)+O(k*n^2) -- Decomposition complexity + k * One/two-qubits Ops
# So when m << n, the decomposition is more efficient.
if isinstance(args, sim.clifford.ActOnCliffordTableauArgs):
axes = args.get_axes(qubits)
# This padding is important and cannot be omitted.
padded_tableau = _pad_tableau(self._clifford_tableau, len(args.qubits), axes)
args._state = args.tableau.then(padded_tableau)
return True

if isinstance(args, sim.clifford.ActOnStabilizerCHFormArgs):
# Do we know how to apply CliffordTableau on ActOnStabilizerCHFormArgs?
# It should be unlike because CliffordTableau ignores the global phase but CHForm
# is aimed to fix that.
return NotImplemented

return NotImplemented
Loading

0 comments on commit 1626009

Please sign in to comment.