Collect the latest developments of MAE and its applications in the field of remote sensing
SatMAE VS SpectralGPT
- (NeurIPS'2022)SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery Yezhen Cong, Samar Khanna
- (ICCV'2023)Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning Colorado J. Reed, Ritwik Gupta
- (NeurIPS'2023)Cross-Scale MAE: A Tale of Multiscale Exploitation in Remote Sensing Maofeng Tang, Andrei Liviu Cozma
- (CVPR'2024)SatMAE++: Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery Mubashir Noman, Muzammal Naseer
- (TGRS'2023)SS-MAE: Spatial-Spectral Masked Auto-Encoder for Mulit-Source Remote Sensing Image Classification Junyan Lin, Feng Gao
- (TGRS'2024)S2HM2: A Spectral–Spatial Hierarchical Masked Modeling Framework for Self-Supervised Feature Learning and Classification of Large-Scale Hyperspectral Images Lilin Tu, Jiayi Li
- (JSTARS'2024)HSIMAE: A Unified Masked Autoencoder With Large-Scale Pretraining for Hyperspectral Image Classification Yue Wang, Ming Wen
- (TPAMI'2024)SpectralGPT: Spectral Remote Sensing Foundation Model Danfeng Hong, Bing Zhang
- (ECCV'2024)MMEarth: Exploring Multi-Modal Pretext Tasks For Geospatial Representation Learning Vishal Nedungadi, et al.