ibstract is a Python 3 package for trading data acquiring and management. Thanks to Python's asyncio library, it can accesses Interactive Brokers API for concurrent remote data downloading, and a MySQL database as local cache for concurrent data archiving and offline query. Classes in the package also combine, transform, and maintain trading data, and provide organized and aggregated data or signals for algorithmic trading. ibstract users can focus on trading algorithms without worrying about the hassels of handling a broker API or the tedious and error-prone trading data management.
- Concurrent data acquiring and processing with asynchronous access to remote
IB API server and local MySQL database, powered by
async/await
syntax of asyncio module in Python 3.6+ and 3rd-party aio-libs. - Automatically analyze and split a user's historical data request, and dispatch data acquiring tasks to local MySQL database (preferred) or remote IB API server. In this way much downloading efforts could be saved for repeating requests for the same data pieces.
- MarketDataBlock class manages and merges historical data pieces with different symbols, types, durations and date/time in an organized and standardized way. Data time zone is region-based using pytz, and automatically converted and maintained.
- Asynchronously generating technical signals from user-specified historical data.
- Concurrent real-time market data streaming and real-time trading signal generating.
- Background order submission, status monitoring, and logging.
pip3 install -U ibstract
- Python 3.6+ (Anaconda 4.4.0+)
- Interactive Brokers API 9.73.2+
- IB gateway latest 967+
- ib_insync 0.8.5+
- aiomysql 0.0.9+
- sqlalchemy 1.1.9+
- pandas 0.20.1+
- tzlocal 1.4+
For full explanation and detailed examples, please take a look at the example notebooks:
- Historical data operations example notebook
- MarketDataBlock class example notebook
- IB class example notebook
A user coroutine requests wider range of historical data than those existing in MySQL. The data pieces existing in MySQL will not be downloaded, but will be queried and combined with those downloaded. A request could be split into multiple downloading tasks and perfored concurrently and asynchronously, as well as inserting the downloaded data to MySQL in the background.
Data pre-existing in MySQL database:
opening high low closing volume barcount average Symbol DataType BarSize TickerTime GS TRADES 1d 2017-08-31 00:00:00-04:00 223.25 224.49 222.58 223.74 15491 10053 223.764 2017-09-01 00:00:00-04:00 224.55 227.56 223.53 225.88 16940 11739 226.350 2017-09-05 00:00:00-04:00 223.85 224.00 217.30 217.78 45499 28392 218.901
Request for wider range of data:
async def user_coro(req, broker, mysql):
blk_ret = await get_hist_data(req, broker, mysql)
return blk_ret
# Request daily data of 8 days, from 8/29 - 9/8.
# Data from 8/31 - 9/5 exist in local database and will not be downloaded.
req = HistDataReq('Stock', 'GS', '1d', '8d', dtest(2017, 9, 9))
broker = IB('127.0.0.1', 4002)
db_info = {'host': '127.0.0.1', 'user': 'root', 'password': 'ibstract',
'db': 'ibstract_test'}
loop = asyncio.get_event_loop()
mysql={**db_info, 'loop': loop}
blk_ret = loop.run_until_complete(user_coro(req, broker, mysql))
blk_ret.df
Output data is the combination of those in database and downloaded:
opening high low closing volume barcount average Symbol DataType BarSize TickerTime GS TRADES 1d 2017-08-29 00:00:00-04:00 217.27 220.14 215.75 219.96 18795 12617 218.7545 2017-08-30 00:00:00-04:00 220.25 224.22 220.09 222.42 18580 12085 222.7730 2017-08-31 00:00:00-04:00 223.25 224.49 222.58 223.74 15491 10053 223.7635 2017-09-01 00:00:00-04:00 224.55 227.56 223.53 225.88 16940 11739 226.3505 2017-09-05 00:00:00-04:00 223.85 224.00 217.30 217.78 45499 28392 218.9010 2017-09-06 00:00:00-04:00 218.98 221.02 217.61 218.83 26158 15960 219.5335 2017-09-07 00:00:00-04:00 218.73 218.81 214.64 215.84 27963 17892 215.7020 2017-09-08 00:00:00-04:00 215.51 219.28 215.40 217.21 23250 15562 217.5120
Input pandas.DataFrames having different columns, symbols, barsize, and dates/times:
print(df_gs1)
print(df_gs2)
print(df_fb5m)
print(df_fb1m)
print(df_amzn)
symbol barsize date close 0 GS 5 min 2016-07-12 10:35:00-07:00 140.05 1 GS 5 min 2016-07-12 11:20:00-07:00 141.34 symbol barSize datetime close volume 0 GS 5 min 2016-07-12 10:35:00-07:00 140.05 344428 time c vol 0 2016-07-21 09:30:00 120.05 234242 1 2016-07-21 09:35:00 120.32 410842 time c vol 0 2016-07-25 09:40:00 120.47 579638 1 2016-07-25 09:41:00 120.82 192476 symb bar date close volume 0 AMZN 1 day 2016-07-21 749.22 27917 1 AMZN 1 day 2016-07-22 738.87 36662 2 AMZN 1 day 2016-07-23 727.23 8766
MarketDatablock organizes DataFrames together:
import pytz
from ibstract import MarketDataBlock
east = pytz.timezone('US/Eastern')
blk = MarketDataBlock(df_gs1, datatype='TRADES', tz=east)
blk.update(df_gs2, datatype='TRADES', tz=east)
blk.update(df_fb5m, symbol='FB', datatype='TRADES', barsize='5m', tz=east)
blk.update(df_fb1m, symbol='FB', datatype='TRADES', barsize='1m', tz=east)
blk_amzn = MarketDataBlock(df_amzn, datatype='TRADES', tz=east)
blk.combine(blk_amzn)
Output MarketDataBlock:
closing volume Symbol DataType BarSize TickerTime AMZN TRADES 1d 2016-07-21 00:00:00-04:00 749.22 27917 2016-07-22 00:00:00-04:00 738.87 36662 2016-07-23 00:00:00-04:00 727.23 8766 FB TRADES 1m 2016-07-25 09:40:00-04:00 120.47 579638 2016-07-25 09:41:00-04:00 120.82 192476 5m 2016-07-21 09:30:00-04:00 120.05 234242 2016-07-21 09:35:00-04:00 120.32 410842 GS TRADES 5m 2016-07-12 13:35:00-04:00 140.05 344428 2016-07-12 14:20:00-04:00 141.34 -1
- Migrated to native Python IB API.
- Asynchronous operations based on asyncio and aio-libs.
- New structures and features.
- Added documentation and test cases.
- This experimental version was developed based on IB API v9.72 or older, using swigibpy v0.5.0.