From 675a73715d3c8adb9d9a9dce5f76a2db5106790c Mon Sep 17 00:00:00 2001 From: Mortada Mehyar Date: Fri, 10 Jun 2016 00:23:34 -0700 Subject: [PATCH] [DOCUMENTATION] fixed groupby aggregation example for pyspark ## What changes were proposed in this pull request? fixing documentation for the groupby/agg example in python ## How was this patch tested? the existing example in the documentation dose not contain valid syntax (missing parenthesis) and is not using `Column` in the expression for `agg()` after the fix here's how I tested it: ``` In [1]: from pyspark.sql import Row In [2]: import pyspark.sql.functions as func In [3]: %cpaste Pasting code; enter '--' alone on the line to stop or use Ctrl-D. :records = [{'age': 19, 'department': 1, 'expense': 100}, : {'age': 20, 'department': 1, 'expense': 200}, : {'age': 21, 'department': 2, 'expense': 300}, : {'age': 22, 'department': 2, 'expense': 300}, : {'age': 23, 'department': 3, 'expense': 300}] :-- In [4]: df = sqlContext.createDataFrame([Row(**d) for d in records]) In [5]: df.groupBy("department").agg(df["department"], func.max("age"), func.sum("expense")).show() +----------+----------+--------+------------+ |department|department|max(age)|sum(expense)| +----------+----------+--------+------------+ | 1| 1| 20| 300| | 2| 2| 22| 600| | 3| 3| 23| 300| +----------+----------+--------+------------+ Author: Mortada Mehyar Closes #13587 from mortada/groupby_agg_doc_fix. --- docs/sql-programming-guide.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 940c1d77045ad..efdf873c34556 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -2221,7 +2221,7 @@ import pyspark.sql.functions as func # In 1.3.x, in order for the grouping column "department" to show up, # it must be included explicitly as part of the agg function call. -df.groupBy("department").agg("department"), func.max("age"), func.sum("expense")) +df.groupBy("department").agg(df["department"], func.max("age"), func.sum("expense")) # In 1.4+, grouping column "department" is included automatically. df.groupBy("department").agg(func.max("age"), func.sum("expense"))