forked from liuquande/SAML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
474 lines (359 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
""" Utility functions. """
import numpy as np
import os
import random
import tensorflow as tf
from tensorflow.contrib.layers.python import layers as tf_layers
from tensorflow.python.platform import flags
import SimpleITK as sitk
from scipy import ndimage
import itertools
from tensorflow.contrib import slim
from scipy.ndimage import _ni_support
from scipy.ndimage.morphology import distance_transform_edt, binary_erosion,\
generate_binary_structure
FLAGS = flags.FLAGS
## Image reader
def get_images(paths, labels, nb_samples=None, shuffle=True):
if nb_samples is not None:
sampler = lambda x: random.sample(x, nb_samples)
else:
sampler = lambda x: x
images = [(i, os.path.join(path, image)) \
for i, path in zip(labels, paths) \
for image in sampler(os.listdir(path))]
if shuffle:
random.shuffle(images)
return images
## Loss functions
def mse(pred, label):
pred = tf.reshape(pred, [-1])
label = tf.reshape(label, [-1])
return tf.reduce_mean(tf.square(pred-label))
def xent(pred, label):
return tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=label)
def kd(data1, label1, data2, label2, bool_indicator, n_class=7, temperature=2.0):
kd_loss = 0.0
eps = 1e-16
prob1s = []
prob2s = []
for cls in range(n_class):
mask1 = tf.tile(tf.expand_dims(label1[:, cls], -1), [1, n_class])
logits_sum1 = tf.reduce_sum(tf.multiply(data1, mask1), axis=0)
num1 = tf.reduce_sum(label1[:, cls])
activations1 = logits_sum1 * 1.0 / (num1 + eps) # add eps for prevent un-sampled class resulting in NAN
prob1 = tf.nn.softmax(activations1 / temperature)
prob1 = tf.clip_by_value(prob1, clip_value_min=1e-8, clip_value_max=1.0) # for preventing prob=0 resulting in NAN
mask2 = tf.tile(tf.expand_dims(label2[:, cls], -1), [1, n_class])
logits_sum2 = tf.reduce_sum(tf.multiply(data2, mask2), axis=0)
num2 = tf.reduce_sum(label2[:, cls])
activations2 = logits_sum2 * 1.0 / (num2 + eps)
prob2 = tf.nn.softmax(activations2 / temperature)
prob2 = tf.clip_by_value(prob2, clip_value_min=1e-8, clip_value_max=1.0)
KL_div = (tf.reduce_sum(prob1 * tf.log(prob1 / prob2)) + tf.reduce_sum(prob2 * tf.log(prob2 / prob1))) / 2.0
kd_loss += KL_div * bool_indicator[cls]
prob1s.append(prob1)
prob2s.append(prob2)
kd_loss = kd_loss / n_class
return kd_loss, prob1s, prob2s
def JS(data1, label1, data2, label2, bool_indicator, n_class=7, temperature=2.0):
kd_loss = 0.0
eps = 1e-16
prob1s = []
prob2s = []
for cls in range(n_class):
mask1 = tf.tile(tf.expand_dims(label1[:, cls], -1), [1, n_class])
logits_sum1 = tf.reduce_sum(tf.multiply(data1, mask1), axis=0)
num1 = tf.reduce_sum(label1[:, cls])
activations1 = logits_sum1 * 1.0 / (num1 + eps) # add eps for prevent un-sampled class resulting in NAN
prob1 = tf.nn.softmax(activations1 / temperature)
prob1 = tf.clip_by_value(prob1, clip_value_min=1e-8, clip_value_max=1.0) # for preventing prob=0 resulting in NAN
mask2 = tf.tile(tf.expand_dims(label2[:, cls], -1), [1, n_class])
logits_sum2 = tf.reduce_sum(tf.multiply(data2, mask2), axis=0)
num2 = tf.reduce_sum(label2[:, cls])
activations2 = logits_sum2 * 1.0 / (num2 + eps)
prob2 = tf.nn.softmax(activations2 / temperature)
prob2 = tf.clip_by_value(prob2, clip_value_min=1e-8, clip_value_max=1.0)
mean_prob = (prob1 + prob2) / 2
JS_div = (tf.reduce_sum(prob1 * tf.log(prob1 / mean_prob)) + tf.reduce_sum(prob2 * tf.log(prob2 / mean_prob))) / 2.0
kd_loss += JS_div * bool_indicator[cls]
prob1s.append(prob1)
prob2s.append(prob2)
kd_loss = kd_loss / n_class
return kd_loss, prob1s, prob2s
def contrastive(feature1, label1, feature2, label2, bool_indicator=None, margin=50):
l1 = tf.argmax(label1, axis=1)
l2 = tf.argmax(label2, axis=1)
pair = tf.to_float(tf.equal(l1,l2))
delta = tf.reduce_sum(tf.square(feature1-feature2), 1) + 1e-10
match_loss = delta
delta_sqrt = tf.sqrt(delta + 1e-10)
mismatch_loss = tf.square(tf.nn.relu(margin - delta_sqrt))
if bool_indicator is None:
loss = tf.reduce_mean(0.5 * (pair * match_loss + (1-pair) * mismatch_loss))
else:
loss = 0.5 * tf.reduce_sum(match_loss*pair)/tf.reduce_sum(pair)
debug_dist_positive = tf.reduce_sum(delta_sqrt * pair)/tf.reduce_sum(pair)
debug_dist_negative = tf.reduce_sum(delta_sqrt * (1-pair))/tf.reduce_sum(1-pair)
return loss, pair, delta, debug_dist_positive, debug_dist_negative
def compute_distance(feature1, label1, feature2, label2):
l1 = tf.argmax(label1, axis=1)
l2 = tf.argmax(label2, axis=1)
pair = tf.to_float(tf.equal(l1,l2))
delta = tf.reduce_sum(tf.square(feature1-feature2), 1)
delta_sqrt = tf.sqrt(delta + 1e-16)
dist_positive_pair = tf.reduce_sum(delta_sqrt * pair)/tf.reduce_sum(pair)
dist_negative_pair = tf.reduce_sum(delta_sqrt * (1-pair))/tf.reduce_sum(1-pair)
return dist_positive_pair, dist_negative_pair
def _get_segmentation_cost(softmaxpred, seg_gt, n_class=2):
"""
calculate the loss for segmentation prediction
:param seg_logits: probability segmentation from the segmentation network
:param seg_gt: ground truth segmentaiton mask
:return: segmentation loss, according to the cost_kwards setting, cross-entropy weighted loss and dice loss
"""
dice = 0
for i in xrange(n_class):
#inse = tf.reduce_sum(softmaxpred[:, :, :, i]*seg_gt[:, :, :, i])
inse = tf.reduce_sum(softmaxpred[:, :, :, i]*seg_gt[:, :, :, i])
l = tf.reduce_sum(softmaxpred[:, :, :, i])
r = tf.reduce_sum(seg_gt[:, :, :, i])
dice += 2.0 * inse/(l+r+1e-7) # here 1e-7 is relaxation eps
dice_loss = 1 - 1.0 * dice / n_class
# ce_weighted = 0
# for i in xrange(n_class):
# gti = seg_gt[:,:,:,i]
# predi = softmaxpred[:,:,:,i]
# ce_weighted += -1.0 * gti * tf.log(tf.clip_by_value(predi, 0.005, 1))
# ce_weighted_loss = tf.reduce_mean(ce_weighted)
# total_loss = dice_loss
return dice_loss#, dice_loss, ce_weighted_loss
def _get_compactness_cost(y_pred, y_true):
"""
y_pred: BxHxWxC
"""
"""
lenth term
"""
# y_pred = tf.one_hot(y_pred, depth=2)
# print (y_true.shape)
# print (y_pred.shape)
y_pred = y_pred[..., 1]
y_true = y_pred[..., 1]
x = y_pred[:,1:,:] - y_pred[:,:-1,:] # horizontal and vertical directions
y = y_pred[:,:,1:] - y_pred[:,:,:-1]
delta_x = x[:,:,1:]**2
delta_y = y[:,1:,:]**2
delta_u = tf.abs(delta_x + delta_y)
epsilon = 0.00000001 # where is a parameter to avoid square root is zero in practice.
w = 0.01
length = w * tf.reduce_sum(tf.sqrt(delta_u + epsilon), [1, 2])
area = tf.reduce_sum(y_pred, [1,2])
compactness_loss = tf.reduce_sum(length ** 2 / (area * 4 * 3.1415926))
return compactness_loss, tf.reduce_sum(length), tf.reduce_sum(area), delta_u
# def _get_sample_masf(y_true):
# """
# y_pred: BxHxWx2
# """
# positive_mask = np.expand_dims(y_true[..., 1], axis=3)
# metrix_label_group = np.expand_dims(np.array([1, 0, 1, 1, 0]), axis = 1)
# # print (positive_mask.shape)
# coutour_group = np.zeros(positive_mask.shape)
# for i in range(positive_mask.shape[0]):
# slice_i = positive_mask[i]
# if metrix_label_group[i] == 1:
# sample = (slice_i == 1)
# elif metrix_label_group[i] == 0:
# sample = (slice_i == 0)
# coutour_group[i] = sample
# return coutour_group, metrix_label_group
def _get_coutour_sample(y_true):
"""
y_true: BxHxWx2
"""
positive_mask = np.expand_dims(y_true[..., 1], axis=3)
metrix_label_group = np.expand_dims(np.array([1, 0, 1, 1, 0]), axis = 1)
coutour_group = np.zeros(positive_mask.shape)
for i in range(positive_mask.shape[0]):
slice_i = positive_mask[i]
if metrix_label_group[i] == 1:
# generate coutour mask
erosion = ndimage.binary_erosion(slice_i[..., 0], iterations=1).astype(slice_i.dtype)
sample = np.expand_dims(slice_i[..., 0] - erosion, axis = 2)
elif metrix_label_group[i] == 0:
# generate background mask
dilation = ndimage.binary_dilation(slice_i, iterations=5).astype(slice_i.dtype)
sample = dilation - slice_i
coutour_group[i] = sample
return coutour_group, metrix_label_group
# def _get_negative(y_true):
def _get_boundary_cost(y_pred, y_true):
"""
y_pred: BxHxWxC
"""
"""
lenth term
"""
# y_pred = tf.one_hot(y_pred, depth=2)
# print (y_true.shape)
# print (y_pred.shape)
y_pred = y_pred[..., 1]
y_true = y_pred[..., 1]
x = y_pred[:,1:,:] - y_pred[:,:-1,:] # horizontal and vertical directions
y = y_pred[:,:,1:] - y_pred[:,:,:-1]
delta_x = x[:,:,1:]**2
delta_y = y[:,1:,:]**2
delta_u = tf.abs(delta_x + delta_y)
epsilon = 0.00000001 # where is a parameter to avoid square root is zero in practice.
w = 0.01
length = w * tf.reduce_sum(tf.sqrt(delta_u + epsilon), [1, 2]) # equ.(11) in the paper
area = tf.reduce_sum(y_pred, [1,2])
compactness_loss = tf.reduce_sum(length ** 2 / (area * 4 * 3.1415926))
return compactness_loss, tf.reduce_sum(length), tf.reduce_sum(area)
def check_folder(log_dir):
if not os.path.exists(log_dir):
print ("Allocating '{:}'".format(log_dir))
os.makedirs(log_dir)
return log_dir
def _eval_dice(gt_y, pred_y, detail=False):
class_map = { # a map used for mapping label value to its name, used for output
"0": "bg",
"1": "CZ",
"2": "prostate"
}
dice = []
for cls in xrange(1,2):
gt = np.zeros(gt_y.shape)
pred = np.zeros(pred_y.shape)
gt[gt_y == cls] = 1
pred[pred_y == cls] = 1
dice_this = 2*np.sum(gt*pred)/(np.sum(gt)+np.sum(pred))
dice.append(dice_this)
if detail is True:
#print ("class {}, dice is {:2f}".format(class_map[str(cls)], dice_this))
logging.info("class {}, dice is {:2f}".format(class_map[str(cls)], dice_this))
return dice
def __surface_distances(result, reference, voxelspacing=None, connectivity=1):
"""
The distances between the surface voxel of binary objects in result and their
nearest partner surface voxel of a binary object in reference.
"""
result = np.atleast_1d(result.astype(np.bool))
reference = np.atleast_1d(reference.astype(np.bool))
if voxelspacing is not None:
voxelspacing = _ni_support._normalize_sequence(voxelspacing, result.ndim)
voxelspacing = np.asarray(voxelspacing, dtype=np.float64)
if not voxelspacing.flags.contiguous:
voxelspacing = voxelspacing.copy()
# binary structure
footprint = generate_binary_structure(result.ndim, connectivity)
# test for emptiness
if 0 == np.count_nonzero(result):
raise RuntimeError('The first supplied array does not contain any binary object.')
if 0 == np.count_nonzero(reference):
raise RuntimeError('The second supplied array does not contain any binary object.')
# extract only 1-pixel border line of objects
result_border = result ^ binary_erosion(result, structure=footprint, iterations=1)
reference_border = reference ^ binary_erosion(reference, structure=footprint, iterations=1)
# compute average surface distance
# Note: scipys distance transform is calculated only inside the borders of the
# foreground objects, therefore the input has to be reversed
dt = distance_transform_edt(~reference_border, sampling=voxelspacing)
sds = dt[result_border]
return sds
def asd(result, reference, voxelspacing=None, connectivity=1):
sds = __surface_distances(result, reference, voxelspacing, connectivity)
asd = sds.mean()
return asd
def calculate_hausdorff(lP,lT,spacing):
return asd(lP, lT, spacing)
def _eval_haus(pred, gt, spacing, detail=False):
'''
:param pred: whole brain prediction
:param gt: whole
:param detail:
:return: a list, indicating Dice of each class for one case
'''
haus = []
for cls in range(1,2):
pred_i = np.zeros(pred.shape)
pred_i[pred == cls] = 1
gt_i = np.zeros(gt.shape)
gt_i[gt == cls] = 1
# hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter()
# hausdorff_distance_filter.Execute(gt_i, pred_i)
haus_cls = calculate_hausdorff(gt_i, (pred_i), spacing)
haus.append(haus_cls)
if detail is True:
logging.info("class {}, haus is {:4f}".format(class_map[str(cls)], haus_cls))
# logging.info("4 class average haus is {:4f}".format(np.mean(haus)))
return haus
def _connectivity_region_analysis(mask):
s = [[0,1,0],
[1,1,1],
[0,1,0]]
label_im, nb_labels = ndimage.label(mask)#, structure=s)
sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
# plt.imshow(label_im)
label_im[label_im != np.argmax(sizes)] = 0
label_im[label_im == np.argmax(sizes)] = 1
return label_im
def _crop_object_region(mask, prediction):
limX, limY, limZ = np.where(mask>0)
min_z = np.min(limZ)
max_z = np.max(limZ)
prediction[..., :np.min(limZ)] = 0
prediction[..., np.max(limZ)+1:] = 0
return prediction
def parse_fn(data_path):
'''
:param image_path: path to a folder of a patient
:return: normalized entire image with its corresponding label
In an image, the air region is 0, so we only calculate the mean and std within the brain area
For any image-level normalization, do it here
'''
path = data_path.split(",")
image_path = path[0]
label_path = path[1]
#itk_image = zoom2shape(image_path, [512,512])#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
#itk_mask = zoom2shape(label_path, [512,512], label=True)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
itk_image = sitk.ReadImage(image_path)#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
itk_mask = sitk.ReadImage(label_path)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
# itk_image = sitk.ReadImage(os.path.join(image_path, 'T2_FLAIR_unbiased_brain_rigid_to_mni.nii.gz'))
image = sitk.GetArrayFromImage(itk_image)
mask = sitk.GetArrayFromImage(itk_mask)
#image[image >= 1000] = 1000
binary_mask = np.ones(mask.shape)
mean = np.sum(image * binary_mask) / np.sum(binary_mask)
std = np.sqrt(np.sum(np.square(image - mean) * binary_mask) / np.sum(binary_mask))
image = (image - mean) / std # normalize per image, using statistics within the brain, but apply to whole image
mask[mask==2] = 1
return image.transpose([1,2,0]), mask.transpose([1,2,0]) # transpose the orientation of the
def parse_fn_haus(data_path):
'''
:param image_path: path to a folder of a patient
:return: normalized entire image with its corresponding label
In an image, the air region is 0, so we only calculate the mean and std within the brain area
For any image-level normalization, do it here
'''
path = data_path.split(",")
image_path = path[0]
label_path = path[1]
#itk_image = zoom2shape(image_path, [512,512])#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
#itk_mask = zoom2shape(label_path, [512,512], label=True)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
itk_image = sitk.ReadImage(image_path)#os.path.join(image_path, 'T1_unbiased_brain_rigid_to_mni.nii.gz'))
itk_mask = sitk.ReadImage(label_path)#os.path.join(image_path, 'T1_brain_seg_rigid_to_mni.nii.gz'))
# itk_image = sitk.ReadImage(os.path.join(image_path, 'T2_FLAIR_unbiased_brain_rigid_to_mni.nii.gz'))
spacing = itk_mask.GetSpacing()
image = sitk.GetArrayFromImage(itk_image)
mask = sitk.GetArrayFromImage(itk_mask)
#image[image >= 1000] = 1000
binary_mask = np.ones(mask.shape)
mean = np.sum(image * binary_mask) / np.sum(binary_mask)
std = np.sqrt(np.sum(np.square(image - mean) * binary_mask) / np.sum(binary_mask))
image = (image - mean) / std # normalize per image, using statistics within the brain, but apply to whole image
mask[mask==2] = 1
return image.transpose([1,2,0]), mask.transpose([1,2,0]), spacing
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)