diff --git a/python/tvm/autotvm/task/task.py b/python/tvm/autotvm/task/task.py index 1f5827d7e9d0..3097c29c3b00 100644 --- a/python/tvm/autotvm/task/task.py +++ b/python/tvm/autotvm/task/task.py @@ -61,7 +61,7 @@ def _encode(x): return ("TENSOR", get_const_tuple(x.shape), x.dtype) if isinstance(x, (tuple, list, container.Array)): return tuple([_encode(a) for a in x]) - if isinstance(x, (str, int, float, np.int, np.float, expr.Var, expr.Any)): + if isinstance(x, (str, int, float, expr.Var, expr.Any)): return x if isinstance(x, (expr.StringImm, expr.IntImm, expr.FloatImm)): return x.value diff --git a/python/tvm/topi/testing/depthwise_conv2d_python.py b/python/tvm/topi/testing/depthwise_conv2d_python.py index 2239c56134f5..02964ecfae3b 100644 --- a/python/tvm/topi/testing/depthwise_conv2d_python.py +++ b/python/tvm/topi/testing/depthwise_conv2d_python.py @@ -67,17 +67,15 @@ def depthwise_conv2d_python_nchw(input_np, filter_np, stride, padding): ] elif padding == "SAME": out_channel = in_channel * channel_multiplier - out_height = np.int(np.ceil(float(in_height) / float(stride_h))) - out_width = np.int(np.ceil(float(in_width) / float(stride_w))) + out_height = int(np.ceil(float(in_height) / float(stride_h))) + out_width = int(np.ceil(float(in_width) / float(stride_w))) output_np = np.zeros((batch, out_channel, out_height, out_width)) - pad_along_height = np.int( - np.max((out_height - 1) * stride_h + filter_height - in_height, 0) - ) - pad_along_width = np.int(np.max((out_width - 1) * stride_w + filter_width - in_width, 0)) - pad_top_tvm = np.int(np.ceil(float(pad_along_height) / 2)) - pad_left_tvm = np.int(np.ceil(float(pad_along_width) / 2)) - pad_top_scipy = np.int(np.ceil(float(filter_height - 1) / 2)) - pad_left_scipy = np.int(np.ceil(float(filter_width - 1) / 2)) + pad_along_height = int(np.max((out_height - 1) * stride_h + filter_height - in_height, 0)) + pad_along_width = int(np.max((out_width - 1) * stride_w + filter_width - in_width, 0)) + pad_top_tvm = int(np.ceil(float(pad_along_height) / 2)) + pad_left_tvm = int(np.ceil(float(pad_along_width) / 2)) + pad_top_scipy = int(np.ceil(float(filter_height - 1) / 2)) + pad_left_scipy = int(np.ceil(float(filter_width - 1) / 2)) index_h = pad_top_scipy - pad_top_tvm index_w = pad_left_scipy - pad_left_tvm for i in range(batch): @@ -138,17 +136,15 @@ def depthwise_conv2d_python_nhwc(input_np, filter_np, stride, padding): ] if padding == "SAME": out_channel = in_channel * channel_multiplier - out_height = np.int(np.ceil(float(in_height) / float(stride_h))) - out_width = np.int(np.ceil(float(in_width) / float(stride_w))) + out_height = int(np.ceil(float(in_height) / float(stride_h))) + out_width = int(np.ceil(float(in_width) / float(stride_w))) output_np = np.zeros((batch, out_height, out_width, out_channel)) - pad_along_height = np.int( - np.max((out_height - 1) * stride_h + filter_height - in_height, 0) - ) - pad_along_width = np.int(np.max((out_width - 1) * stride_w + filter_width - in_width, 0)) - pad_top_tvm = np.int(np.ceil(float(pad_along_height) / 2)) - pad_left_tvm = np.int(np.ceil(float(pad_along_width) / 2)) - pad_top_scipy = np.int(np.ceil(float(filter_height - 1) / 2)) - pad_left_scipy = np.int(np.ceil(float(filter_width - 1) / 2)) + pad_along_height = int(np.max((out_height - 1) * stride_h + filter_height - in_height, 0)) + pad_along_width = int(np.max((out_width - 1) * stride_w + filter_width - in_width, 0)) + pad_top_tvm = int(np.ceil(float(pad_along_height) / 2)) + pad_left_tvm = int(np.ceil(float(pad_along_width) / 2)) + pad_top_scipy = int(np.ceil(float(filter_height - 1) / 2)) + pad_left_scipy = int(np.ceil(float(filter_width - 1) / 2)) index_h = pad_top_scipy - pad_top_tvm index_w = pad_left_scipy - pad_left_tvm for i in range(batch):