-
Notifications
You must be signed in to change notification settings - Fork 32
/
compressmobilenet_0.1.cfg
279 lines (256 loc) · 2.99 KB
/
compressmobilenet_0.1.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
[net]
batch=200
subdivisions=10
height=448
width=448
max_crop=512
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.0001
policy=poly
power=4
max_batches=8000000
angle=7
hue = .1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=21
size=3
stride=2
pad=1
activation=leaky
#1th 3x3
[convolutional]
batch_normalize=1
filters=21
size=3
stride=1
pad=1
group=21
activation=leaky
#1th 1x1
[convolutional]
batch_normalize=1
filters=53
size=1
stride=1
pad=0
activation=leaky
#2th 3x3
[convolutional]
batch_normalize=1
filters=53
size=3
stride=2
pad=1
group=53
activation=leaky
#2th 1x1
[convolutional]
batch_normalize=1
filters=122
size=1
stride=1
pad=0
activation=leaky
#3th 3x3
[convolutional]
batch_normalize=1
filters=122
size=3
stride=1
pad=1
group=122
activation=leaky
#3th 1x1
[convolutional]
batch_normalize=1
filters=117
size=1
stride=1
pad=0
activation=leaky
#4th 3x3
[convolutional]
batch_normalize=1
filters=117
size=3
stride=2
pad=1
group=117
activation=leaky
#4th 1x1
[convolutional]
batch_normalize=1
filters=236
size=1
stride=1
pad=0
activation=leaky
#5th 3x3
[convolutional]
batch_normalize=1
filters=236
size=3
stride=1
pad=1
group=236
activation=leaky
#5th 1x1
[convolutional]
batch_normalize=1
filters=234
size=1
stride=1
pad=0
activation=leaky
#6th 3x3
[convolutional]
batch_normalize=1
filters=234
size=3
stride=2
pad=1
group=234
activation=leaky
#6th 1x1
[convolutional]
batch_normalize=1
filters=471
size=1
stride=1
pad=0
activation=leaky
#7th 3x3
[convolutional]
batch_normalize=1
filters=471
size=3
stride=1
pad=1
group=471
activation=leaky
#7th 1x1
[convolutional]
batch_normalize=1
filters=465
size=1
stride=1
pad=0
activation=leaky
#8th 3x3
[convolutional]
batch_normalize=1
filters=465
size=3
stride=1
pad=1
group=465
activation=leaky
#8th 1x1
[convolutional]
batch_normalize=1
filters=463
size=1
stride=1
pad=0
activation=leaky
#9th 3x3
[convolutional]
batch_normalize=1
filters=463
size=3
stride=1
pad=1
group=463
activation=leaky
#9th 1x1
[convolutional]
batch_normalize=1
filters=467
size=1
stride=1
pad=0
activation=leaky
#10th 3x3
[convolutional]
batch_normalize=1
filters=467
size=3
stride=1
pad=1
group=467
activation=leaky
#10th 1x1
[convolutional]
batch_normalize=1
filters=474
size=1
stride=1
pad=0
activation=leaky
#11th 3x3
[convolutional]
batch_normalize=1
filters=474
size=3
stride=1
pad=1
group=474
activation=leaky
#11th 1x1
[convolutional]
batch_normalize=1
filters=470
size=1
stride=1
pad=0
activation=leaky
#12th 3x3
[convolutional]
batch_normalize=1
filters=470
size=3
stride=2
pad=1
group=470
activation=leaky
#12th 1x1
[convolutional]
batch_normalize=1
filters=656
size=1
stride=1
pad=0
activation=leaky
#13th 3x3
[convolutional]
batch_normalize=1
filters=656
size=3
stride=1
pad=1
group=656
activation=leaky
#13th 1x1
[convolutional]
batch_normalize=1
filters=498
size=1
stride=1
pad=0
activation=leaky
[avgpool]
[convolutional]
filters=1000
size=1
stride=1
activation=linear
[softmax]
groups=1
[cost]
type=sse