-
Notifications
You must be signed in to change notification settings - Fork 50
/
sampler.py
357 lines (318 loc) · 14.3 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27
import os, sys, math, random
import cv2
import numpy as np
from pathlib import Path
from loguru import logger
from omegaconf import OmegaConf
from contextlib import nullcontext
from utils import util_net
from utils import util_image
from utils import util_common
import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from datapipe.datasets import create_dataset
from utils.util_image import ImageSpliterTh
class BaseSampler:
def __init__(
self,
configs,
sf=4,
use_amp=True,
chop_size=128,
chop_stride=128,
chop_bs=1,
padding_offset=16,
seed=10000,
):
'''
Input:
configs: config, see the yaml file in folder ./configs/
sf: int, super-resolution scale
seed: int, random seed
'''
self.configs = configs
self.sf = sf
self.chop_size = chop_size
self.chop_stride = chop_stride
self.chop_bs = chop_bs
self.seed = seed
self.use_amp = use_amp
self.padding_offset = padding_offset
self.setup_dist() # setup distributed training: self.num_gpus, self.rank
self.setup_seed()
self.build_model()
def setup_seed(self, seed=None):
seed = self.seed if seed is None else seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_dist(self, gpu_id=None):
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
# if mp.get_start_method(allow_none=True) is None:
# mp.set_start_method('spawn')
# rank = int(os.environ['LOCAL_RANK'])
# torch.cuda.set_device(rank % num_gpus)
# dist.init_process_group(backend='nccl', init_method='env://')
rank = 0
torch.cuda.set_device(rank)
self.num_gpus = num_gpus
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
def write_log(self, log_str):
if self.rank == 0:
print(log_str, flush=True)
def build_model(self):
# diffusion model
log_str = f'Building the diffusion model with length: {self.configs.diffusion.params.steps}...'
self.write_log(log_str)
self.base_diffusion = util_common.instantiate_from_config(self.configs.diffusion)
model = util_common.instantiate_from_config(self.configs.model).cuda()
ckpt_path =self.configs.model.ckpt_path
assert ckpt_path is not None
self.write_log(f'Loading Diffusion model from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
util_net.reload_model(model, ckpt['state_dict'])
else:
util_net.reload_model(model, ckpt)
self.freeze_model(model)
self.model = model.eval()
# autoencoder model
if self.configs.autoencoder.params.get("lora_tune_decoder", False):
lora_vae_state = ckpt['lora_vae']
elif self.configs.autoencoder.get("tune_decoder", False):
vae_state = ckpt['vae']
if self.configs.autoencoder is not None:
params = self.configs.autoencoder.get('params', dict)
autoencoder = util_common.get_obj_from_str(self.configs.autoencoder.target)(**params)
autoencoder.cuda()
if self.configs.autoencoder.params.get("lora_tune_decoder", False):
ckpt_path = self.configs.autoencoder.ckpt_path
self.write_log(f'Loading AutoEncoder model from {ckpt_path}...')
self.load_model_lora(autoencoder, ckpt_path, tag='autoencoder')
autoencoder.load_state_dict(lora_vae_state, strict=False)
elif self.configs.autoencoder.get("tune_decoder", False):
ckpt_path = self.configs.autoencoder.ckpt_path
self.write_log(f'Loading AutoEncoder model from {ckpt_path}...')
self.load_model(autoencoder, ckpt_path)
ckpt_path =self.configs.model.ckpt_path
self.write_log(f'Loading Finetuned decoder from {ckpt_path}...')
autoencoder.load_state_dict(vae_state, strict=False)
else:
ckpt_path = self.configs.autoencoder.ckpt_path
self.write_log(f'Loading AutoEncoder model from {ckpt_path}...')
self.load_model(autoencoder, ckpt_path)
autoencoder.eval()
self.autoencoder = autoencoder
else:
self.autoencoder = None
def load_model_lora(self, model, ckpt_path=None, tag='model'):
if self.rank == 0:
self.write_log(f'Loading {tag} from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
num_success = 0
for key, value in model.named_parameters():
if key in ckpt:
value.data.copy_(ckpt[key])
num_success += 1
else:
key_parts = key.split('.')
if 'conv' in key_parts:
key_parts.remove('conv')
new_key = '.'.join(key_parts)
if new_key in ckpt:
value.data.copy_(ckpt[new_key])
num_success += 1
assert num_success == len(ckpt)
if self.rank == 0:
self.write_log('Loaded Done')
def load_model(self, model, ckpt_path=None):
state = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in state:
state = state['state_dict']
util_net.reload_model(model, state)
def freeze_model(self, net):
for params in net.parameters():
params.requires_grad = False
class ResShiftSampler(BaseSampler):
def sample_func(self, y0, noise_repeat=False, mask=False):
'''
Input:
y0: n x c x h x w torch tensor, low-quality image, [-1, 1], RGB
mask: image mask for inpainting
Output:
sample: n x c x h x w, torch tensor, [-1, 1], RGB
'''
if noise_repeat:
self.setup_seed()
offset = self.padding_offset
ori_h, ori_w = y0.shape[2:]
if not (ori_h % offset == 0 and ori_w % offset == 0):
flag_pad = True
pad_h = (math.ceil(ori_h / offset)) * offset - ori_h
pad_w = (math.ceil(ori_w / offset)) * offset - ori_w
y0 = F.pad(y0, pad=(0, pad_w, 0, pad_h), mode='reflect')
else:
flag_pad = False
if self.configs.model.params.cond_lq and mask is not None:
model_kwargs={
'lq':y0,
'mask': mask,
}
elif self.configs.model.params.cond_lq:
model_kwargs={'lq':y0,}
else:
model_kwargs = None
results = self.base_diffusion.p_sample_loop(
y=y0,
model=self.model,
first_stage_model=self.autoencoder,
noise=None,
noise_repeat=noise_repeat,
clip_denoised=(self.autoencoder is None),
denoised_fn=None,
model_kwargs=model_kwargs,
progress=False,
) # This has included the decoding for latent space
if flag_pad:
results = results[:, :, :ori_h*self.sf, :ori_w*self.sf]
return results.clamp_(-1.0, 1.0)
def inference(self, in_path, out_path, mask_path=None, mask_back=True, bs=1, noise_repeat=False):
'''
Inference demo.
Input:
in_path: str, folder or image path for LQ image
out_path: str, folder save the results
bs: int, default bs=1, bs % num_gpus == 0
mask_path: image mask for inpainting
'''
def _process_per_image(im_lq_tensor, mask=None):
'''
Input:
im_lq_tensor: b x c x h x w, torch tensor, [-1, 1], RGB
mask: image mask for inpainting, [-1, 1], 1 for unknown area
Output:
im_sr: h x w x c, numpy array, [0,1], RGB
'''
context = torch.cuda.amp.autocast if self.use_amp else nullcontext
if im_lq_tensor.shape[2] > self.chop_size or im_lq_tensor.shape[3] > self.chop_size:
if mask is not None:
im_lq_tensor = torch.cat([im_lq_tensor, mask], dim=1)
im_spliter = ImageSpliterTh(
im_lq_tensor,
self.chop_size,
stride=self.chop_stride,
sf=self.sf,
extra_bs=self.chop_bs,
)
for im_lq_pch, index_infos in im_spliter:
if mask is not None:
im_lq_pch, mask_pch = im_lq_pch[:, :-1], im_lq_pch[:, -1:,]
else:
mask_pch = None
with context():
im_sr_pch = self.sample_func(
im_lq_pch,
noise_repeat=noise_repeat,
mask=mask_pch,
) # 1 x c x h x w, [-1, 1]
im_spliter.update(im_sr_pch, index_infos)
im_sr_tensor = im_spliter.gather()
else:
# print(im_lq_tensor.shape)
with context():
im_sr_tensor = self.sample_func(
im_lq_tensor,
noise_repeat=noise_repeat,
mask=mask,
) # 1 x c x h x w, [-1, 1]
im_sr_tensor = im_sr_tensor * 0.5 + 0.5
if mask_back and mask is not None:
mask = mask * 0.5 + 0.5
im_lq_tensor = im_lq_tensor * 0.5 + 0.5
im_sr_tensor = im_sr_tensor * mask + im_lq_tensor * (1 - mask)
return im_sr_tensor
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path
if self.rank == 0:
assert in_path.exists()
if not out_path.exists():
out_path.mkdir(parents=True)
if self.num_gpus > 1:
dist.barrier()
if in_path.is_dir():
if mask_path is None:
data_config = {'type': 'base',
'params': {'dir_path': str(in_path),
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.5,
'std': 0.5,
},
'need_path': True,
'recursive': True,
'length': None,
}
}
else:
data_config = {'type': 'inpainting_val',
'params': {'lq_path': str(in_path),
'mask_path': mask_path,
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.5,
'std': 0.5,
},
'need_path': True,
'recursive': True,
'im_exts': ['png', 'jpg', 'jpeg', 'JPEG', 'bmp', 'PNG'],
'length': None,
}
}
dataset = create_dataset(data_config)
self.write_log(f'Find {len(dataset)} images in {in_path}')
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=bs,
shuffle=False,
drop_last=False,
)
for data in dataloader:
micro_batchsize = math.ceil(bs / self.num_gpus)
ind_start = self.rank * micro_batchsize
ind_end = ind_start + micro_batchsize
micro_data = {key:value[ind_start:ind_end] for key,value in data.items()}
if micro_data['lq'].shape[0] > 0:
results = _process_per_image(
micro_data['lq'].cuda(),
mask=micro_data['mask'].cuda() if 'mask' in micro_data else None,
) # b x h x w x c, [0, 1], RGB
for jj in range(results.shape[0]):
im_sr = util_image.tensor2img(results[jj], rgb2bgr=True, min_max=(0.0, 1.0))
im_name = Path(micro_data['path'][jj]).stem
im_path = out_path / f"{im_name}.png"
util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8')
if self.num_gpus > 1:
dist.barrier()
else:
im_lq = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c
im_lq_tensor = util_image.img2tensor(im_lq).cuda() # 1 x c x h x w
if mask_path is not None:
im_mask = util_image.imread(mask_path, chn='gray', dtype='float32')[:,:, None] # h x w x 1
im_mask_tensor = util_image.img2tensor(im_mask).cuda() # 1 x c x h x w
im_sr_tensor = _process_per_image(
(im_lq_tensor - 0.5) / 0.5,
mask=(im_mask_tensor - 0.5) / 0.5 if mask_path is not None else None,
)
im_sr = util_image.tensor2img(im_sr_tensor, rgb2bgr=True, min_max=(0.0, 1.0))
im_path = out_path / f"{in_path.stem}.png"
util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8')
self.write_log(f"Processing done, enjoy the results in {str(out_path)}")
if __name__ == '__main__':
pass