forked from kylesargent/ZeroNVS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
launch.py
273 lines (234 loc) · 9.77 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import contextlib
import logging
import os
import sys
import pickle
import numpy as np
from PIL import Image
class ColoredFilter(logging.Filter):
"""
A logging filter to add color to certain log levels.
"""
RESET = "\033[0m"
RED = "\033[31m"
GREEN = "\033[32m"
YELLOW = "\033[33m"
BLUE = "\033[34m"
MAGENTA = "\033[35m"
CYAN = "\033[36m"
# find a color for each type of log. in terminal.
COLORS = {
"WARNING": YELLOW,
"INFO": GREEN,
"DEBUG": BLUE,
"CRITICAL": MAGENTA,
"ERROR": RED,
}
RESET = "\x1b[0m"
def __init__(self):
super().__init__()
def filter(self, record):
if record.levelname in self.COLORS:
color_start = self.COLORS[record.levelname]
record.levelname = f"{color_start}[{record.levelname}]"
record.msg = f"{record.msg}{self.RESET}"
return True
# ckpt: checkpoint, save pretrained model, with state of optimizer and state of training
def set_system_status(system, ckpt_path):
import torch
if ckpt_path is None:
return
ckpt = torch.load(ckpt_path, map_location="cpu")
system.set_resume_status(ckpt["epoch"], ckpt["global_step"])
def main(args, extras) -> None:
# set CUDA_VISIBLE_DEVICES if needed, then import pytorch-lightning
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
env_gpus_str = os.environ.get("CUDA_VISIBLE_DEVICES", None)
env_gpus = list(env_gpus_str.split(",")) if env_gpus_str else []
selected_gpus = [0]
# Always rely on CUDA_VISIBLE_DEVICES if specific GPU ID(s) are specified.
# As far as Pytorch Lightning is concerned, we always use all available GPUs
# (possibly filtered by CUDA_VISIBLE_DEVICES).
devices = -1
if len(env_gpus) > 0:
# CUDA_VISIBLE_DEVICES was set already, e.g. within SLURM srun or higher-level script.
n_gpus = len(env_gpus)
else:
selected_gpus = list(args.gpu.split(","))
n_gpus = len(selected_gpus)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
import pytorch_lightning as pl
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.utilities.rank_zero import rank_zero_only
# what is this?
if args.typecheck:
from jaxtyping import install_import_hook
install_import_hook("threestudio", "typeguard.typechecked")
import threestudio
from threestudio.systems.base import BaseSystem
from threestudio.utils.callbacks import (
CodeSnapshotCallback,
ConfigSnapshotCallback,
CustomProgressBar,
ProgressCallback,
)
from threestudio.utils.config import ExperimentConfig, load_config
from threestudio.utils.misc import get_rank
from threestudio.utils.typing import Optional
from ldm.models.diffusion import options
options.LDM_DISTILLATION_ONLY = True # what is distillation only???
# XXX HERE: set diffusion model, which is in zeronvs_diffusion
# but why ldm is in the root directory? because it is a submodule?
logger = logging.getLogger("pytorch_lightning")
if args.verbose:
logger.setLevel(logging.DEBUG)
# set logging format
for handler in logger.handlers:
if handler.stream == sys.stderr: # type: ignore
if not args.gradio:
handler.setFormatter(logging.Formatter("%(levelname)s %(message)s"))
handler.addFilter(ColoredFilter())
else:
handler.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
# parse YAML config to OmegaConf
cfg: ExperimentConfig # ":" is class inherited comments. which means cfg is inherited from ExperimentConfig.
cfg = load_config(args.config, cli_args=extras, n_gpus=n_gpus) # the zero123_scene.yaml
# set a different seed for each device
pl.seed_everything(cfg.seed + get_rank(), workers=True)
submodule_path = (
"zeronvs_diffusion/zero123"
)
assert os.path.exists(submodule_path)
sys.path.insert(0, submodule_path)
# import pdb
# pdb.set_trace()
# XXX HERE is dataloader and workflow in system module.
dm = threestudio.find(cfg.data_type)(cfg.data) # "find" will return a class, and initialized by cfg.data
# here data type is: single-image-datamodule
system: BaseSystem = threestudio.find(cfg.system_type)(
cfg.system, resumed=cfg.resume is not None
) # system inherits from BaseSystem
# here system is "zero123-system"
# the path where to save log
system.set_save_dir(os.path.join(cfg.trial_dir, "save"))
if args.gradio: # gradio: a lib to generate UI
fh = logging.FileHandler(os.path.join(cfg.trial_dir, "logs"))
fh.setLevel(logging.INFO)
if args.verbose: # detailed log
fh.setLevel(logging.DEBUG)
fh.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
logger.addHandler(fh)
callbacks = []
if args.train:
callbacks += [ # set: save model and configs when training
ModelCheckpoint(
dirpath=os.path.join(cfg.trial_dir, "ckpts"), **cfg.checkpoint
),
LearningRateMonitor(logging_interval="step"),
# CodeSnapshotCallback(
# os.path.join(cfg.trial_dir, "code"), use_version=False
# ),
ConfigSnapshotCallback(
args.config,
cfg,
os.path.join(cfg.trial_dir, "configs"),
use_version=False,
),
]
if args.gradio:
callbacks += [
ProgressCallback(save_path=os.path.join(cfg.trial_dir, "progress"))
]
else:
callbacks += [CustomProgressBar(refresh_rate=1)]
def write_to_text(file, lines):
with open(file, "w") as f:
for line in lines:
f.write(line + "\n")
loggers = []
if args.train:
# make tensorboard logging dir to suppress warning
# in distributed training, ensure only one device(rank 0 ) will do some operations
rank_zero_only(
lambda: os.makedirs(os.path.join(cfg.trial_dir, "tb_logs"), exist_ok=True)
)()
loggers += [
TensorBoardLogger(cfg.trial_dir, name="tb_logs"),
CSVLogger(cfg.trial_dir, name="csv_logs"),
] + system.get_loggers()
rank_zero_only(
lambda: write_to_text(
os.path.join(cfg.trial_dir, "cmd.txt"),
["python " + " ".join(sys.argv), str(args)],
)
)()
# set the trainer
# pytorch lightning: a lib for separating research code from engineering code.
# encapsulates operations such as model training, validation, testing, and prediction
# core components: LightningModule. Each model needs to inherit the LightningModule class and implement some key methods. responsible for defining the structure of the model, forward propagation, optimizer, etc.
trainer = Trainer(
callbacks=callbacks,
logger=loggers,
inference_mode=False,
accelerator="gpu",
devices=devices,
**cfg.trainer, # unpacking keywords in the dictionary. equals to passing every key-value as an independent parameter.
)
if args.train:
# XXX HERE to find the workflow in the system and dm
# system -> BaseSystem(in threedstudio) -> LightningModule
trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume) # where is cfg.resume?????????
trainer.test(system, datamodule=dm)
if args.gradio:
# also export assets if in gradio mode
trainer.predict(system, datamodule=dm)
elif args.validate:
# manually set epoch and global_step as they cannot be automatically resumed
set_system_status(system, cfg.resume)
trainer.validate(system, datamodule=dm, ckpt_path=cfg.resume)
elif args.test:
# manually set epoch and global_step as they cannot be automatically resumed
set_system_status(system, cfg.resume)
trainer.test(system, datamodule=dm, ckpt_path=cfg.resume)
elif args.export:
set_system_status(system, cfg.resume)
trainer.predict(system, datamodule=dm, ckpt_path=cfg.resume) # XXX error: *** stack smashing detected ***: terminated
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to config file")
parser.add_argument(
"--gpu",
default="0",
help="GPU(s) to be used. 0 means use the 1st available GPU. "
"1,2 means use the 2nd and 3rd available GPU. "
"If CUDA_VISIBLE_DEVICES is set before calling `launch.py`, "
"this argument is ignored and all available GPUs are always used.",
)
# choose train, because we train nerf for every image
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--train", action="store_true")
group.add_argument("--validate", action="store_true")
group.add_argument("--test", action="store_true")
group.add_argument("--export", action="store_true")
parser.add_argument(
"--gradio", action="store_true", help="if true, run in gradio mode"
)
parser.add_argument(
"--verbose", action="store_true", help="if true, set logging level to DEBUG"
)
parser.add_argument(
"--typecheck",
action="store_true",
help="whether to enable dynamic type checking",
)
args, extras = parser.parse_known_args() # what will extras get???
if args.gradio:
# FIXME: no effect, stdout is not captured
with contextlib.redirect_stdout(sys.stderr):
main(args, extras)
else:
main(args, extras)