-
Notifications
You must be signed in to change notification settings - Fork 14
/
inference.py
159 lines (131 loc) · 5.01 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
# @Time : 2020/6/16 23:51
# @Author : zonas.wang
# @Email : [email protected]
# @File : inference.py
import math
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import os.path as osp
import time
import tensorflow as tf
import cv2
import glob
import numpy as np
import pyclipper
from shapely.geometry import Polygon
from tqdm import tqdm
from models.model import DBNet
from config import DBConfig
cfg = DBConfig()
def resize_image(image, image_short_side=736):
height, width, _ = image.shape
if height < width:
new_height = image_short_side
new_width = int(math.ceil(new_height / height * width / 32) * 32)
else:
new_width = image_short_side
new_height = int(math.ceil(new_width / width * height / 32) * 32)
resized_img = cv2.resize(image, (new_width, new_height))
return resized_img
def box_score_fast(bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def unclip(box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(contour):
if not contour.size:
return [], 0
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2],
points[index_3], points[index_4]]
return box, min(bounding_box[1])
def polygons_from_bitmap(pred, bitmap, dest_width, dest_height, max_candidates=500, box_thresh=0.7):
pred = pred[..., 0]
bitmap = bitmap[..., 0]
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:max_candidates]:
epsilon = 0.001 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = box_score_fast(pred, points.reshape(-1, 2))
if box_thresh > score:
continue
if points.shape[0] > 2:
box = unclip(points, unclip_ratio=2.0)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < 5:
continue
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
def main():
BOX_THRESH = 0.5
mean = np.array([103.939, 116.779, 123.68])
model_path = "checkpoints/2020-07-24/db_83_2.0894_1.9788.h5"
img_dir = 'datasets/test/input'
img_names = os.listdir(img_dir)
model = DBNet(cfg, model='inference')
model.load_weights(model_path, by_name=True, skip_mismatch=True)
for img_name in tqdm(img_names):
img_path = osp.join(img_dir, img_name)
image = cv2.imread(img_path)
src_image = image.copy()
h, w = image.shape[:2]
image = resize_image(image)
image = image.astype(np.float32)
image -= mean
image_input = np.expand_dims(image, axis=0)
image_input_tensor = tf.convert_to_tensor(image_input)
start_time = time.time()
p = model.predict(image_input_tensor)[0]
end_time = time.time()
print("time: ", end_time - start_time)
bitmap = p > 0.3
boxes, scores = polygons_from_bitmap(p, bitmap, w, h, box_thresh=BOX_THRESH)
for box in boxes:
cv2.drawContours(src_image, [np.array(box)], -1, (0, 255, 0), 2)
image_fname = osp.split(img_path)[-1]
cv2.imwrite('datasets/test/output/' + image_fname, src_image)
if __name__ == '__main__':
main()