forked from OpenTalker/video-retalking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
350 lines (297 loc) · 17 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import numpy as np
import cv2, os, sys, subprocess, platform, torch
from tqdm import tqdm
from PIL import Image
from scipy.io import loadmat
sys.path.insert(0, 'third_part')
sys.path.insert(0, 'third_part/GPEN')
sys.path.insert(0, 'third_part/GFPGAN')
# 3dmm extraction
from third_part.face3d.util.preprocess import align_img
from third_part.face3d.util.load_mats import load_lm3d
from third_part.face3d.extract_kp_videos import KeypointExtractor
# face enhancement
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
from third_part.GFPGAN.gfpgan import GFPGANer
# expression control
from third_part.ganimation_replicate.model.ganimation import GANimationModel
from utils import audio
from utils.ffhq_preprocess import Croper
from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
from utils.inference_utils import Laplacian_Pyramid_Blending_with_mask, face_detect, load_model, options, split_coeff, \
trans_image, transform_semantic, find_crop_norm_ratio, load_face3d_net, exp_aus_dict
import warnings
warnings.filterwarnings("ignore")
args = options()
def main():
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
print('[Info] Using {} for inference.'.format(device))
os.makedirs(os.path.join('temp', args.tmp_dir), exist_ok=True)
enhancer = FaceEnhancement(base_dir='checkpoints', size=512, model='GPEN-BFR-512', use_sr=False, \
sr_model='rrdb_realesrnet_psnr', channel_multiplier=2, narrow=1, device=device)
restorer = GFPGANer(model_path='checkpoints/GFPGANv1.3.pth', upscale=1, arch='clean', \
channel_multiplier=2, bg_upsampler=None)
base_name = args.face.split('/')[-1]
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
args.static = True
if not os.path.isfile(args.face):
raise ValueError('--face argument must be a valid path to video/image file')
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(args.face)]
fps = args.fps
else:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
y1, y2, x1, x2 = args.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("[Step 0] Number of frames available for inference: "+str(len(full_frames)))
# face detection & cropping, cropping the first frame as the style of FFHQ
croper = Croper('checkpoints/shape_predictor_68_face_landmarks.dat')
full_frames_RGB = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
full_frames_RGB, crop, quad = croper.crop(full_frames_RGB, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = cly+ly, min(cly+ry, full_frames[0].shape[0]), clx+lx, min(clx+rx, full_frames[0].shape[1])
# original_size = (ox2 - ox1, oy2 - oy1)
frames_pil = [Image.fromarray(cv2.resize(frame,(256,256))) for frame in full_frames_RGB]
# get the landmark according to the detected face.
if not os.path.isfile('temp/'+base_name+'_landmarks.txt') or args.re_preprocess:
print('[Step 1] Landmarks Extraction in Video.')
kp_extractor = KeypointExtractor()
lm = kp_extractor.extract_keypoint(frames_pil, './temp/'+base_name+'_landmarks.txt')
else:
print('[Step 1] Using saved landmarks.')
lm = np.loadtxt('temp/'+base_name+'_landmarks.txt').astype(np.float32)
lm = lm.reshape([len(full_frames), -1, 2])
if not os.path.isfile('temp/'+base_name+'_coeffs.npy') or args.exp_img is not None or args.re_preprocess:
net_recon = load_face3d_net(args.face3d_net_path, device)
lm3d_std = load_lm3d('checkpoints/BFM')
video_coeffs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"):
frame = frames_pil[idx]
W, H = frame.size
lm_idx = lm[idx].reshape([-1, 2])
if np.mean(lm_idx) == -1:
lm_idx = (lm3d_std[:, :2]+1) / 2.
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
else:
lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
trans_params, im_idx, lm_idx, _ = align_img(frame, lm_idx, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_idx_tensor = torch.tensor(np.array(im_idx)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
coeffs = split_coeff(net_recon(im_idx_tensor))
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate([pred_coeff['id'], pred_coeff['exp'], pred_coeff['tex'], pred_coeff['angle'],\
pred_coeff['gamma'], pred_coeff['trans'], trans_params[None]], 1)
video_coeffs.append(pred_coeff)
semantic_npy = np.array(video_coeffs)[:,0]
np.save('temp/'+base_name+'_coeffs.npy', semantic_npy)
else:
print('[Step 2] Using saved coeffs.')
semantic_npy = np.load('temp/'+base_name+'_coeffs.npy').astype(np.float32)
# generate the 3dmm coeff from a single image
if args.exp_img is not None and ('.png' in args.exp_img or '.jpg' in args.exp_img):
print('extract the exp from',args.exp_img)
exp_pil = Image.open(args.exp_img).convert('RGB')
lm3d_std = load_lm3d('third_part/face3d/BFM')
W, H = exp_pil.size
kp_extractor = KeypointExtractor()
lm_exp = kp_extractor.extract_keypoint([exp_pil], 'temp/'+base_name+'_temp.txt')[0]
if np.mean(lm_exp) == -1:
lm_exp = (lm3d_std[:, :2] + 1) / 2.
lm_exp = np.concatenate(
[lm_exp[:, :1] * W, lm_exp[:, 1:2] * H], 1)
else:
lm_exp[:, -1] = H - 1 - lm_exp[:, -1]
trans_params, im_exp, lm_exp, _ = align_img(exp_pil, lm_exp, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_exp_tensor = torch.tensor(np.array(im_exp)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
expression = split_coeff(net_recon(im_exp_tensor))['exp'][0]
del net_recon
elif args.exp_img == 'smile':
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_mouth'])[0]
else:
print('using expression center')
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_center'])[0]
# load DNet, model(LNet and ENet)
D_Net, model = load_model(args, device)
if not os.path.isfile('temp/'+base_name+'_stablized.npy') or args.re_preprocess:
imgs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 3] Stabilize the expression In Video:"):
if args.one_shot:
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[0:1]
else:
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[idx:idx+1]
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
coeff = transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
# hacking the new expression
coeff[:, :64, :] = expression[None, :64, None].to(device)
with torch.no_grad():
output = D_Net(source_img, coeff)
img_stablized = np.uint8((output['fake_image'].squeeze(0).permute(1,2,0).cpu().clamp_(-1, 1).numpy() + 1 )/2. * 255)
imgs.append(cv2.cvtColor(img_stablized,cv2.COLOR_RGB2BGR))
np.save('temp/'+base_name+'_stablized.npy',imgs)
del D_Net
else:
print('[Step 3] Using saved stabilized video.')
imgs = np.load('temp/'+base_name+'_stablized.npy')
torch.cuda.empty_cache()
if not args.audio.endswith('.wav'):
command = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(args.audio, 'temp/{}/temp.wav'.format(args.tmp_dir))
subprocess.call(command, shell=True)
args.audio = 'temp/{}/temp.wav'.format(args.tmp_dir)
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80./fps, 0, []
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
imgs = imgs[:len(mel_chunks)]
full_frames = full_frames[:len(mel_chunks)]
lm = lm[:len(mel_chunks)]
imgs_enhanced = []
for idx in tqdm(range(len(imgs)), desc='[Step 5] Reference Enhancement'):
img = imgs[idx]
pred, _, _ = enhancer.process(img, img, face_enhance=True, possion_blending=False)
imgs_enhanced.append(pred)
gen = datagen(imgs_enhanced.copy(), mel_chunks, full_frames, None, (oy1,oy2,ox1,ox2))
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/{}/result.mp4'.format(args.tmp_dir), cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h))
if args.up_face != 'original':
instance = GANimationModel()
instance.initialize()
instance.setup()
kp_extractor = KeypointExtractor()
for i, (img_batch, mel_batch, frames, coords, img_original, f_frames) in enumerate(tqdm(gen, desc='[Step 6] Lip Synthesis:', total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)))):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
img_original = torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)/255. # BGR -> RGB
with torch.no_grad():
incomplete, reference = torch.split(img_batch, 3, dim=1)
pred, low_res = model(mel_batch, img_batch, reference)
pred = torch.clamp(pred, 0, 1)
if args.up_face in ['sad', 'angry', 'surprise']:
tar_aus = exp_aus_dict[args.up_face]
else:
pass
if args.up_face == 'original':
cur_gen_faces = img_original
else:
test_batch = {'src_img': torch.nn.functional.interpolate((img_original * 2 - 1), size=(128, 128), mode='bilinear'),
'tar_aus': tar_aus.repeat(len(incomplete), 1)}
instance.feed_batch(test_batch)
instance.forward()
cur_gen_faces = torch.nn.functional.interpolate(instance.fake_img / 2. + 0.5, size=(384, 384), mode='bilinear')
if args.without_rl1 is not False:
incomplete, reference = torch.split(img_batch, 3, dim=1)
mask = torch.where(incomplete==0, torch.ones_like(incomplete), torch.zeros_like(incomplete))
pred = pred * mask + cur_gen_faces * (1 - mask)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
torch.cuda.empty_cache()
for p, f, xf, c in zip(pred, frames, f_frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
ff = xf.copy()
ff[y1:y2, x1:x2] = p
# month region enhancement by GFPGAN
cropped_faces, restored_faces, restored_img = restorer.enhance(
ff, has_aligned=False, only_center_face=True, paste_back=True)
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
mouse_mask = np.zeros_like(restored_img)
tmp_mask = enhancer.faceparser.process(restored_img[y1:y2, x1:x2], mm)[0]
mouse_mask[y1:y2, x1:x2]= cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.
height, width = ff.shape[:2]
restored_img, ff, full_mask = [cv2.resize(x, (512, 512)) for x in (restored_img, ff, np.float32(mouse_mask))]
img = Laplacian_Pyramid_Blending_with_mask(restored_img, ff, full_mask[:, :, 0], 10)
pp = np.uint8(cv2.resize(np.clip(img, 0 ,255), (width, height)))
pp, orig_faces, enhanced_faces = enhancer.process(pp, xf, bbox=c, face_enhance=False, possion_blending=True)
out.write(pp)
out.release()
if not os.path.isdir(os.path.dirname(args.outfile)):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
command = 'ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/{}/result.mp4'.format(args.tmp_dir), args.outfile)
subprocess.call(command, shell=platform.system() != 'Windows')
print('outfile:', args.outfile)
# frames:256x256, full_frames: original size
def datagen(frames, mels, full_frames, frames_pil, cox):
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = [], [], [], [], [], []
base_name = args.face.split('/')[-1]
refs = []
image_size = 256
# original frames
kp_extractor = KeypointExtractor()
fr_pil = [Image.fromarray(frame) for frame in frames]
lms = kp_extractor.extract_keypoint(fr_pil, 'temp/'+base_name+'x12_landmarks.txt')
frames_pil = [ (lm, frame) for frame,lm in zip(fr_pil, lms)] # frames is the croped version of modified face
crops, orig_images, quads = crop_faces(image_size, frames_pil, scale=1.0, use_fa=True)
inverse_transforms = [calc_alignment_coefficients(quad + 0.5, [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]]) for quad in quads]
del kp_extractor.detector
oy1,oy2,ox1,ox2 = cox
face_det_results = face_detect(full_frames, args, jaw_correction=True)
for inverse_transform, crop, full_frame, face_det in zip(inverse_transforms, crops, full_frames, face_det_results):
imc_pil = paste_image(inverse_transform, crop, Image.fromarray(
cv2.resize(full_frame[int(oy1):int(oy2), int(ox1):int(ox2)], (256, 256))))
ff = full_frame.copy()
ff[int(oy1):int(oy2), int(ox1):int(ox2)] = cv2.resize(np.array(imc_pil.convert('RGB')), (ox2 - ox1, oy2 - oy1))
oface, coords = face_det
y1, y2, x1, x2 = coords
refs.append(ff[y1: y2, x1:x2])
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face = refs[idx]
oface, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
oface = cv2.resize(oface, (args.img_size, args.img_size))
img_batch.append(oface)
ref_batch.append(face)
mel_batch.append(m)
coords_batch.append(coords)
frame_batch.append(frame_to_save)
full_frame_batch.append(full_frames[idx].copy())
if len(img_batch) >= args.LNet_batch_size:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch, ref_batch = [], [], [], [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
if __name__ == '__main__':
main()