forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperations.go
755 lines (644 loc) · 19.3 KB
/
operations.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
package gorgonia
import (
"fmt"
"github.com/pkg/errors"
"gorgonia.org/tensor"
)
// contains all public operations that can be performed on nodes
// all the functions here have the signature:
// func (...) (*Node, error)
/* BINARY FUNCTIONS */
func binOpNode(op BinaryOp, a, b *Node) (retVal *Node, err error) {
stabLogf("Creating node for %v, a: %p, b: %p", op, a, b)
enterLogScope()
defer leaveLogScope()
// maybe make stabilization a build tag?
if stabilization {
enterLogScope()
if ebo, ok := op.(elemBinOp); ok {
ot := ebo.binOpType()
enterLogScope()
for _, fn := range binOpStabilizationFns[ot] {
if retVal, err = fn(a, b); err == nil {
leaveLogScope()
return
}
if _, ok := err.(errNoStabilization); !ok {
leaveLogScope()
return
}
}
leaveLogScope()
}
leaveLogScope()
}
stabLogf("No bin op stabilization")
return ApplyOp(op, a, b)
}
// Add performs pointwise a + b
func Add(a, b *Node) (retVal *Node, err error) {
op := newElemBinOp(addOpType, a, b)
return binOpNode(op, a, b)
}
// Sub performs pointwise a - b
func Sub(a, b *Node) (retVal *Node, err error) {
op := newElemBinOp(subOpType, a, b)
return binOpNode(op, a, b)
}
// HadamardProd performs pointwise a * b
func HadamardProd(a, b *Node) (retVal *Node, err error) {
op := newElemBinOp(mulOpType, a, b)
return binOpNode(op, a, b)
}
// Mul is the general handler for multiplication of nodes. It is extremely overloaded. Only use if you know what you're doing
//
// If any of the nodes are ScalarType, then it'll be redirected to HadamardProd() instead
// If the nodes are both vectors (that is, have a shape of (x, 1) or (1, x)), then the operator used will be a vectorDot
// If only one of the nodes is a vector, then the operator used will be a matrix-vector multiplication will be used, and most importantly,
// a transpose will be used (when necessary)
// If both nodes are matrices, then well, matrix multiplication will be done
func Mul(a, b *Node) (retVal *Node, err error) {
if a.IsScalar() || b.IsScalar() {
return HadamardProd(a, b)
}
var op BinaryOp
switch {
case a.IsVector() && b.IsVector():
op = linAlgBinOp{āBinaryOperator: vecDotOperator}
return binOpNode(op, a, b)
case a.IsVector() && b.IsMatrix():
op = linAlgBinOp{āBinaryOperator: matVecMulOperator, transA: true}
return binOpNode(op, b, a)
case a.IsMatrix() && b.IsVector():
op = linAlgBinOp{āBinaryOperator: matVecMulOperator}
return binOpNode(op, a, b)
case a.IsMatrix() && b.IsMatrix():
op = linAlgBinOp{āBinaryOperator: matMulOperator}
return binOpNode(op, a, b)
default:
return nil, errors.Errorf(nyiFail, "Mul", fmt.Sprintf("a %v b %v", a.shape, b.shape))
}
}
// BatchedMatMul returns a node representing the batched mat mul operation
func BatchedMatMul(a, b *Node) (retVal *Node, err error) {
op := linAlgBinOp{āBinaryOperator: batchedMatMulOperator}
return binOpNode(op, a, b)
}
// OuterProd returns a Node representing the outer product of two vectors. This function will return an error if both input nodes are not vectors
func OuterProd(a, b *Node) (retVal *Node, err error) {
if !a.IsVector() || !b.IsVector() {
return nil, errors.New("Expected only vectors to be able to do OuterProd") //for now
}
// TODO: maybe align shapes?
op := linAlgBinOp{āBinaryOperator: outerProdOperator}
return binOpNode(op, a, b)
}
// HadamardDiv performs pointwise a / b
func HadamardDiv(a, b *Node) (retVal *Node, err error) {
op := newElemBinOp(divOpType, a, b)
return binOpNode(op, a, b)
}
// Div is a shortcut function for HadamardDiv for scalar values. For matrix/tensor values, the matrix division operation is not yet handled, and will panic.
func Div(a, b *Node) (retVal *Node, err error) {
if a.IsScalar() || b.IsScalar() {
return HadamardDiv(a, b)
}
// otherwise, matrix division
panic("Unhandled")
}
// Pow performs pointwise exponentiation
func Pow(a, b *Node) (retVal *Node, err error) {
op := newElemBinOp(powOpType, a, b)
return binOpNode(op, a, b)
}
// Gt performs a pointwise comparison a > b. retSame indicates if the return value should be the same type as the input values
func Gt(a, b *Node, retSame bool) (retVal *Node, err error) {
op := newElemBinOp(gtOpType, a, b)
op.retSame = retSame
retVal, err = binOpNode(op, a, b)
return
}
// Gte performs pointwise comparison a >= b. retSame indicates if the return value should be the same type as the input values
func Gte(a, b *Node, retSame bool) (retVal *Node, err error) {
op := newElemBinOp(gteOpType, a, b)
op.retSame = retSame
return binOpNode(op, a, b)
}
/* UNARY STUFF */
func unaryOpNode(op Op, a *Node) (retVal *Node, err error) {
stabLogf("Creating node for %v, a: %p %v", op, a, a)
enterLogScope()
defer leaveLogScope()
if stabilization {
// do optimization/stabilization
// TODO: maybe recursively stabilize?
enterLogScope()
ot := op.(elemUnaryOp).unaryOpType()
for _, fn := range unaryOpStabilizationFns[ot] {
if retVal, err = fn(a); err == nil {
stabLogf("stabilized")
leaveLogScope()
return
}
if _, ok := err.(errNoStabilization); !ok {
stabLogf("Actual error")
leaveLogScope()
return
}
stabLogf("No stabilization found")
}
leaveLogScope()
stabLogf("No stabilizations - retVal: %v", retVal)
}
return ApplyOp(op, a)
}
// Abs performs pointwise |a|
func Abs(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(absOpType, a)
return unaryOpNode(op, a)
}
// Sign performs pointwise sign() on the input. Returns -1 for a negative, +1 for positive
func Sign(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(signOpType, a)
return unaryOpNode(op, a)
}
// Ceil performs pointwise ceil() on the input.
func Ceil(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(ceilOpType, a)
return unaryOpNode(op, a)
}
// Floor performs pointwise floor() on the input.
func Floor(a *Node) (retval *Node, err error) {
op := newElemUnaryOp(floorOpType, a)
return unaryOpNode(op, a)
}
// Sin performs pointwise sin() on the input.
func Sin(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(sinOpType, a)
return unaryOpNode(op, a)
}
// Cos performs pointwise cos() on the input.
func Cos(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(cosOpType, a)
return unaryOpNode(op, a)
}
// Exp performs pointwise exp() on the input.
func Exp(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(expOpType, a)
return unaryOpNode(op, a)
}
// Log performs pointwise log() on the input. Note that this is the natural logarithm.
func Log(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(lnOpType, a)
return unaryOpNode(op, a)
}
// Log2 performs pointwise log2() on the input.
func Log2(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(log2OpType, a)
return unaryOpNode(op, a)
}
// Neg performs pointwise neg() on the input.
func Neg(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(negOpType, a)
return unaryOpNode(op, a)
}
// Square performs pointwise ^2 on the input.
func Square(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(squareOpType, a)
return unaryOpNode(op, a)
}
// Sqrt performs pointwise sqrt on the input.
func Sqrt(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(sqrtOpType, a)
return unaryOpNode(op, a)
}
// Inverse performs pointwise inverse() on the input. Note this means the reciprocal.
func Inverse(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(inverseOpType, a)
return unaryOpNode(op, a)
}
// Cube performs pointwise ^3 on the input.
func Cube(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(cubeOpType, a)
return unaryOpNode(op, a)
}
// Sigmoid performs pointwise sigmoid() on the input.
func Sigmoid(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(sigmoidOpType, a)
return unaryOpNode(op, a)
}
// Tanh performs pointwise tanh() on the input.
func Tanh(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(tanhOpType, a)
return unaryOpNode(op, a)
}
// Log1p performs pointwise log1p() on the input.
func Log1p(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(log1pOpType, a)
return unaryOpNode(op, a)
}
// more complex unaries
// SoftMax performs softmax on the input. Specifically this is used:
// e^(a[i]) / sum((e^(a[i])))
// For a more numerically stable SoftMax, use StableSoftMax.
func SoftMax(a *Node) (retVal *Node, err error) {
var exp, sum *Node
if exp, err = Exp(a); err == nil {
axis := 1 // default
if exp.IsColVec() || (exp.IsVector() && !exp.IsRowVec()) {
axis = 0
}
if sum, err = Sum(exp, axis); err == nil {
if sum.IsScalar() {
return HadamardDiv(exp, sum)
}
return Broadcast(divOpType, exp, sum, NewBroadcastPattern(nil, []byte{1}))
}
return nil, errors.Wrap(err, operationError)
}
return nil, errors.Wrap(err, operationError)
}
// StableSoftMax performs a numerically stable softmax on the input. Specifically this is the formula used:
// e^(a - max(a)) / sum(e^(a - max(a)))
func StableSoftMax(a *Node) (retVal *Node, err error) {
var max, exp, sum *Node
if max, err = Max(a); err != nil {
return nil, errors.Wrap(err, operationError)
}
if retVal, err = Sub(a, max); err == nil {
if exp, err = Exp(retVal); err == nil {
if sum, err = Sum(exp, 1); err == nil {
return HadamardDiv(exp, sum)
}
return nil, errors.Wrap(err, operationError)
}
return nil, errors.Wrap(err, operationError)
}
return nil, errors.Wrap(err, operationError)
}
// LogSumExp performs addition in the log domain
func LogSumExp(a *Node, axis int) (retVal *Node, err error) {
var max, exp, sum, logSum *Node
if max, err = Max(a, axis); err != nil {
return nil, errors.Wrap(err, operationError)
}
if retVal, err = Sub(a, max); err == nil {
if exp, err = Exp(retVal); err == nil {
if sum, err = Sum(exp, axis); err == nil {
if sum, err = Add(sum, max); err == nil {
if logSum, err = Log(sum); err == nil {
return Sum(logSum, axis)
}
}
}
}
}
return nil, errors.Wrap(err, operationError)
}
// Softplus performs a softplus on the input.
func Softplus(a *Node) (retVal *Node, err error) {
op := newElemUnaryOp(softplusOpType, a)
return unaryOpNode(op, a)
}
/* Aggregate Functions */
// At is a symbolic operation for getting a value at the provided coordinates.
// If the input is a scalar, all the coordinates MUST be 0, or else an error will be returned.
func At(a *Node, coords ...int) (retVal *Node, err error) {
if a.IsScalar() {
for _, c := range coords {
if c != 0 {
return nil, errors.Errorf("At() only works with scalars when the coordinates are (0...0). Got %v instead", coords)
}
}
return a, nil
}
dims := a.Dims()
op := atOp{
coordinates: coords,
d: dims,
}
return ApplyOp(op, a)
}
// Max performs a max() on the input and the provided axes.
func Max(a *Node, along ...int) (retVal *Node, err error) {
if a.IsScalar() {
// can't max a scalar. Should return error
return a, nil
}
dims := a.Dims()
if len(along) == 0 {
along = intRange(0, dims)
}
op := newMaxOp(along, dims)
return ApplyOp(op, a)
}
// Mean performs a mean() on the input and the provided axes.
func Mean(a *Node, along ...int) (retVal *Node, err error) {
if a.IsScalar() {
// can't mean a scalar... return error
return a, nil
}
dims := a.Dims()
if len(along) == 0 {
along = intRange(0, dims)
}
var s *Node
if s, err = Sum(a, along...); err != nil {
return nil, errors.Wrap(err, operationError)
}
sizes := make(Nodes, len(along))
for i, axis := range along {
if sizes[i], err = SizeOf(axis, a); err != nil {
return nil, errors.Wrap(err, operationError)
}
}
var counts *Node
if counts, err = ReduceMul(sizes); err == nil {
return HadamardDiv(s, counts)
}
return nil, errors.Wrap(err, operationError)
}
// Sum performs a sum() on the input and the provided axes.
func Sum(a *Node, along ...int) (retVal *Node, err error) {
if a.IsScalar() {
retVal = a // or error?
return
}
dims := a.Dims()
if len(along) == 0 {
switch {
case a.IsRowVec():
along = []int{1}
case a.IsColVec(), a.IsVector():
along = []int{0}
default:
along = intRange(0, dims)
}
}
op := newSumOp(along, a.shape, dims)
return ApplyOp(op, a)
}
// Norm returns the p-norm of a Value. Use p=2 if you want to use unordered norms.
//
// This is a simpler version of the norms found in the Tensor package, which specializes and optimizes even more
// (well, given it's adapted from Numpy, it is clearly way more optimized)
func Norm(a *Node, axis, p int) (retVal *Node, err error) {
if p == 2 {
if retVal, err = Square(a); err == nil {
if retVal, err = Sum(retVal, axis); err == nil {
retVal, err = Sqrt(retVal)
if err != nil {
return nil, errors.Wrap(err, operationError)
}
} else {
return nil, errors.Wrap(err, operationError)
}
} else {
return nil, errors.Wrap(err, operationError)
}
return
}
var dt tensor.Dtype
if dt, err = dtypeOf(a.t); err != nil {
return nil, errors.Wrapf(err, "Failed to determine the dtype of %T", a.t)
}
var b, inv *Node
switch dt {
case Float32:
b = NewConstant(float32(p))
inv = NewConstant(float32(1) / float32(p))
case Float64:
b = NewConstant(float64(p))
inv = NewConstant(float64(1) / float64(p))
default:
return nil, errors.New("Cannot norm a non-floating point type")
}
if retVal, err = Pow(a, b); err == nil {
if retVal, err = Sum(retVal, axis); err == nil {
retVal, err = Pow(retVal, inv)
if err != nil {
return nil, errors.Wrap(err, operationError)
}
} else {
return nil, errors.Wrap(err, operationError)
}
} else {
return nil, errors.Wrap(err, operationError)
}
return
}
// Reduction
// ReduceAdd takes a slice of *Nodes, and folds them into one by adding
func ReduceAdd(nodes Nodes, opts ...NodeConsOpt) (retVal *Node, err error) {
switch len(nodes) {
case 0:
return nil, nil // or error?
case 1:
return nodes[0], nil
case 2:
if retVal, err = Add(nodes[0], nodes[1]); err == nil {
for _, opt := range opts {
opt(retVal)
}
} else {
return nil, errors.Wrap(err, operationError)
}
return
}
retVal = nodes[0]
for i, n := range nodes {
if i == 0 {
continue
}
if retVal, err = Add(retVal, n); err != nil {
err = errors.Wrap(err, operationError)
return
}
for _, opt := range opts {
opt(retVal)
}
}
return
}
// ReduceMul is like foldl(*, nodes)
func ReduceMul(nodes Nodes, opts ...NodeConsOpt) (retVal *Node, err error) {
switch len(nodes) {
case 0:
return nil, nil // or error?
case 1:
return nodes[0], nil
case 2:
if retVal, err = Mul(nodes[0], nodes[1]); err == nil {
for _, opt := range opts {
opt(retVal)
}
} else {
return nil, errors.Wrap(err, operationError)
}
return
}
retVal = nodes[0]
for i, n := range nodes {
if i == 0 {
continue
}
if retVal, err = Mul(retVal, n); err != nil {
return nil, errors.Wrap(err, operationError)
}
for _, opt := range opts {
opt(retVal)
}
}
return
}
/* Shape related operations */
// SizeOf returns the size of a value along an axis
func SizeOf(axis int, x *Node) (retVal *Node, err error) {
op := sizeOp{
axis: axis,
d: x.Dims(),
}
// if the shape is known
if x.shape != nil {
op.val = x.shape[axis]
}
return ApplyOp(op, x)
}
// Slice slices a *Node. For T[:] slices, pass in nil. Will error out if node's type is not a Tensor
func Slice(n *Node, slices ...tensor.Slice) (retVal *Node, err error) {
if _, ok := n.t.(TensorType); !ok {
return nil, errors.Errorf("Cannot slice on non Tensor tensor. Got %T", n.t)
}
if len(slices) > n.shape.Dims() {
return nil, errors.Errorf("Cannot slice %v. Shape: %v. Slices: %d", n, n.shape, len(slices))
}
retVal = n
var dimsChanged int
for i, s := range slices {
var along int
if i > 0 {
if prev := slices[i-1]; prev != nil {
if prev.End()-prev.Start() == 1 {
dimsChanged++
}
}
}
along = i - dimsChanged
op := newSliceOp(s, along, retVal.Dims())
if retVal, err = ApplyOp(op, retVal); err != nil {
return
}
}
return
}
// Transpose performs a transpose on the input and provided permutation axes.
func Transpose(n *Node, axes ...int) (retVal *Node, err error) {
// prep axes
if len(axes) > 0 && len(axes) != n.Dims() {
return nil, errors.Errorf("n has %d dims, while requested transposes is %d", n.Dims(), len(axes))
}
dims := len(n.shape)
if len(axes) == 0 || axes == nil {
axes = make([]int, dims)
for i := 0; i < dims; i++ {
axes[i] = dims - 1 - i
}
}
// if axes is 0, 1, 2, 3... then no op
if monotonic, incr1 := tensor.IsMonotonicInts(axes); monotonic && incr1 && axes[0] == 0 {
retVal = n
return
}
op := transposeOp{
pattern: axes,
d: len(axes),
}
return ApplyOp(op, n)
}
// Concat performs a concatenate on the provided axis and inputs.
func Concat(axis int, ns ...*Node) (retVal *Node, err error) {
// check that all the nodes have the same number of dimensions
var d int
for i, n := range ns {
if i == 0 {
d = n.shape.Dims()
continue
}
if n.shape.Dims() != d {
err = errors.Errorf("Dimension mismatch. Expected all the nodes to be concatenated to have %d dimensions. Got %d instead", d, n.shape.Dims())
return
}
}
if d == 0 {
err = errors.Errorf("Concat only works on Tensor nodes")
return
}
if axis >= d {
err = errors.Errorf("Invalid axis. Nodes have %d dimensions. Axis is %d", d, axis)
return
}
op := concatOp{axis: axis, d: d, children: len(ns)}
return ApplyOp(op, ns...)
}
// Reshape reshapes a node and returns a new node with the new shape
func Reshape(n *Node, to tensor.Shape) (retVal *Node, err error) {
op := reshapeOp{
from: n.Shape(),
to: to,
}
return ApplyOp(op, n)
}
/* Contraction related operations */
// Tensor contraction of a and b along specified axes.
func Tensordot(aAxes []int, bAxes []int, a, b *Node) (retVal *Node, err error) {
// Check if input tensors actually have dim >= 1
if (len(a.Shape()) < 1) || (len(b.Shape()) < 1) || (a.Dims() < 1) || (b.Dims() < 1) {
return nil, errors.New("Input Node's shape should have length at least 1!")
}
// Check if number of specified axes for a and b matches
if len(aAxes) != len(bAxes) {
return nil, errors.New("Number of Axes supplied along which to contract tensors does not match")
}
// Check for dublicate indices
if containsDublicate(aAxes) || containsDublicate(bAxes) {
return nil, errors.New("Supplied axes to contract along contain dublicates")
}
// Check for more compatibility
aShape := a.Shape()
bShape := b.Shape()
for _, aAxis := range aAxes {
if aAxis >= len(aShape) {
return nil, errors.New("Supplied higher higher axes number to contract along than Tensor's actual number of axes")
}
}
for _, bAxis := range bAxes {
if bAxis >= len(bShape) {
return nil, errors.New("Supplied higher higher axes number to contract along than Tensor's actual number of axes")
}
}
for aAxis, aDim := range aAxes {
if aShape[aDim] != bShape[bAxes[aAxis]] {
return nil, errors.New("Dimension mismatch: Can't contract tensors along supplied axes")
}
}
// Otherwise, apply contraction
aDims := len(aShape)
bDims := len(bShape)
retDims := len(aShape) + len(bShape) - 2*len(aAxes)
op := tensordotOp{aAxes: aAxes, bAxes: bAxes, aDims: aDims, bDims: bDims, retDims: retDims}
return ApplyOp(op, a, b)
}
// Private functions
func containsDublicate(slice []int) bool {
if nil == slice {
return false
}
for index1, value1 := range slice {
for index2, value2 := range slice {
if (value1 == value2) && (index1 != index2) {
return true
}
}
}
return false
}