forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplex_test.go
146 lines (114 loc) · 3.17 KB
/
complex_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
package gorgonia
import "testing"
func TestWeirdNetwork(t *testing.T) {
const (
embeddingDims = 50
hiddenSize = 200
xs = 64
xFeats = 20
ps = 20
pFeats = 10
qs = 50
qFeats = 12
outSize = 10
)
var err error
g := NewGraph()
var x *Node // NewVector(g, Float64, WithShape(xFeats*embeddingDims), WithName("x"), WithInit(Zeroes()))
var p *Node
var q *Node
e_x := NewMatrix(g, Float64, WithShape(xs, embeddingDims), WithName("x embeddings"), WithInit(GlorotU(1)))
e_p := NewMatrix(g, Float64, WithShape(ps, embeddingDims), WithName("p embeddings"), WithInit(GlorotU(1)))
e_q := NewMatrix(g, Float64, WithShape(qs, embeddingDims), WithName("q embeddings"), WithInit(GlorotU(1)))
w0_x := NewMatrix(g, Float64, WithShape(hiddenSize, xFeats*embeddingDims), WithName("layer0 weights for x"), WithInit(GlorotU(1)))
w0_p := NewMatrix(g, Float64, WithShape(hiddenSize, pFeats*embeddingDims), WithName("layer0 weights for p"), WithInit(GlorotU(1)))
w0_q := NewMatrix(g, Float64, WithShape(hiddenSize, qFeats*embeddingDims), WithName("layer0 weights for q"), WithInit(GlorotU(1)))
b := NewVector(g, Float64, WithShape(hiddenSize), WithName("bias"), WithInit(Zeroes()))
w1 := NewMatrix(g, Float64, WithShape(outSize, hiddenSize), WithName("layer 1"), WithInit(GlorotU(1)))
model := Nodes{e_x, e_p, e_q, w0_x, w0_p, w0_q, b, w1}
/* SET UP NEURAL NETWORK */
slicesX := make(Nodes, xFeats)
slicesP := make(Nodes, pFeats)
slicesQ := make(Nodes, qFeats)
for i := 0; i < xFeats; i++ {
if slicesX[i], err = Slice(e_x, S(i)); err != nil {
t.Fatal(err)
}
}
for i := 0; i < pFeats; i++ {
if slicesP[i], err = Slice(e_p, S(i)); err != nil {
t.Fatal(err)
}
}
for i := 0; i < qFeats; i++ {
if slicesQ[i], err = Slice(e_q, S(i)); err != nil {
t.Fatal(err)
}
}
if x, err = Concat(0, slicesX...); err != nil {
t.Fatal(err)
}
if p, err = Concat(0, slicesP...); err != nil {
t.Fatal(err)
}
if q, err = Concat(0, slicesQ...); err != nil {
t.Fatal(err)
}
var wx, wp, wq *Node
if wx, err = Mul(w0_x, x); err != nil {
t.Fatal(err)
}
if wp, err = Mul(w0_p, p); err != nil {
t.Fatal(err)
}
if wq, err = Mul(w0_q, q); err != nil {
t.Fatal(err)
}
// add all them layers
var add0, add1, add2 *Node
if add0, err = Add(wx, wp); err != nil {
t.Fatal(err)
}
if add1, err = Add(add0, wq); err != nil {
t.Fatal(err)
}
if add2, err = Add(add1, b); err != nil {
t.Fatal(err)
}
// activate
var act0 *Node
if act0, err = Cube(add2); err != nil {
t.Fatal(err)
}
// layer 1
var layer1 *Node
if layer1, err = Mul(w1, act0); err != nil {
t.Fatal(err)
}
// activate
var logProb *Node
if logProb, err = SoftMax(layer1); err != nil {
t.Fatal(err)
}
var cost *Node
if cost, err = Slice(logProb, S(0)); err != nil { // dummy slice
t.Fatal(err)
}
// backprop
if _, err = Grad(cost, model...); err != nil {
t.Fatal(err)
}
/* SET UP COMPLETE */
m := NewTapeMachine(g, BindDualValues(model...))
// for debug purposes
// prog, locMap, err := Compile(g)
// log.Println(prog)
// for i := 0; i < 104729; i++ {
for i := 0; i < 2; i++ {
if err = m.RunAll(); err != nil {
t.Errorf("%d %v", i, err)
break
}
m.Reset()
}
}