-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
129 lines (117 loc) · 5.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from utils.data_loader import prepare_data_seq
from utils import config
from model.seq2seq import SeqToSeq
if config.v2:
from model.SVT import CvaeTrans
else:
from model.GVT import CvaeTrans
from model.common_layer import evaluate,evaluate_tra, count_parameters, make_infinite, get_kld
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_
from copy import deepcopy
from tqdm import tqdm
import os
import time
import numpy as np
import math
from tensorboardX import SummaryWriter
data_loader_tra, data_loader_val, data_loader_tst, vocab, program_number = prepare_data_seq(batch_size=config.batch_size)
if(config.test):
print("Test model",config.model)
if(config.model == "trs" or config.model == "cvaetrs"):
model = CvaeTrans(vocab,emo_number=program_number, model_file_path=config.save_path_pretrained, is_eval=True)
# elif(config.model == "cvaetrs"):
# model = CvaeTrans(vocab,emo_number=program_number, model_file_path=config.save_path_pretrained, is_eval=True)
elif(config.model == "cvaenad"):
model = CvaeNAD(vocab,emo_number=program_number, model_file_path=config.save_path_pretrained, is_eval=True)
elif(config.model == "seq2seq"):
model = SeqToSeq(vocab, model_file_path=config.save_path_pretrained, is_eval=True)
elif(config.model == "cvae"):
model = SeqToSeq(vocab, model_file_path=config.save_path_pretrained, is_eval=True)
model = model.eval()
#loss_test, ppl_test, kld_test, bow_test, elbo_test, bleu_score_g, d1,d2,d3 = evaluate(model, data_loader_tst ,ty="test", max_dec_step=50)
get_kld(model, data_loader_tst ,ty="test", max_dec_step=50)
exit(0)
if(config.model == "seq2seq"):
model = SeqToSeq(vocab)
elif(config.model == "cvae"):
model = SeqToSeq(vocab, model_file_path=config.save_path_pretrained)
elif(config.model == "trs"):
model = CvaeTrans(vocab,emo_number=program_number)
for n, p in model.named_parameters():
if p.dim() > 1 and (n !="embedding.lut.weight" and config.pretrain_emb):
xavier_uniform_(p)
elif(config.model == "cvaetrs"):
model = CvaeTrans(vocab,emo_number=program_number, model_file_path=config.save_path_pretrained, load_optim=config.load_optim)
elif(config.model == "cvaenad"):
model = CvaeNAD(vocab,emo_number=program_number)
for n, p in model.named_parameters():
if p.dim() > 1 and (n !="embedding.lut.weight" and config.pretrain_emb):
xavier_uniform_(p)
print("MODEL USED",config.model)
print("TRAINABLE PARAMETERS",count_parameters(model))
check_iter = 1000 if config.dataset=="empathetic" else 1000
if config.persona:
check_iter = 1000
try:
model = model.train()
best_elbo = 1000
patient = 0
writer = SummaryWriter(log_dir=config.save_path)
weights_best = deepcopy(model.state_dict())
data_iter = make_infinite(data_loader_tra)
for n_iter in tqdm(range(1000000)):
if config.gradient_accumulation_steps>1:
loss, ppl, kld, bow, elbo = model.train_n_batch([next(data_iter) for i in range(config.gradient_accumulation_steps)],n_iter)
else:
loss, ppl, kld, bow, elbo = model.train_one_batch(next(data_iter),n_iter)
writer.add_scalars('loss', {'loss_train': loss}, n_iter)
writer.add_scalars('ppl', {'ppl_train': ppl}, n_iter)
writer.add_scalars('kld', {'kld_train': kld}, n_iter)
writer.add_scalars('bow', {'bow_train': bow}, n_iter)
writer.add_scalars('elbo', {'elbo_train': elbo}, n_iter)
if(config.noam):
writer.add_scalars('lr', {'learning_rata': model.optimizer._rate}, n_iter)
if((n_iter+1)%check_iter==0):
model = model.eval()
model.epoch = n_iter
model.__id__logger = 0
#evaluate_tra(model, data_loader_tra ,ty="valid", max_dec_step=50)
loss_val, ppl_val, kld_val, bow_val, elbo_val, bleu_score_g, d1,d2,d3= evaluate(model, data_loader_val ,ty="valid", max_dec_step=50)
writer.add_scalars('loss', {'loss_valid': loss_val}, n_iter)
writer.add_scalars('ppl', {'ppl_valid': ppl_val}, n_iter)
writer.add_scalars('kld', {'kld_valid': kld_val}, n_iter)
writer.add_scalars('bow', {'bow_valid': bow_val}, n_iter)
writer.add_scalars('elbo', {'elbo_valid': elbo_val}, n_iter)
model = model.train()
best_elbo = elbo_val
model.save_model(best_elbo,n_iter,ppl_val ,0,bleu_score_g,kld_val)
weights_best = deepcopy(model.state_dict())
if config.model=="trs":
if config.dataset=="empathetic":
if n_iter>9000: break
else:
if n_iter>17000: break
else:
if config.dataset=="empathetic":
if config.v2:
if n_iter>15000: break
else:
if n_iter>10000: break
else:
if config.v2:
if n_iter>25000: break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
## TESTING
model.load_state_dict({ name: weights_best[name] for name in weights_best })
model.eval()
model.epoch = 100
loss_test, ppl_test, kld_test, bow_test, elbo_test, bleu_score_g, d1,d2,d3 = evaluate(model, data_loader_tst ,ty="test", max_dec_step=50)
file_summary = config.save_path+"summary.txt"
with open(file_summary, 'w') as the_file:
the_file.write("EVAL\tLoss\tPPL\tKLD\tELBO\tBleu_g\td1\td2\td3\n")
the_file.write("{}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\n".format("test",loss_test,ppl_test,kld_test, elbo_test,bleu_score_g,d1,d2,d3))