-
Notifications
You must be signed in to change notification settings - Fork 4
/
trainer_rl_typeloss.py
282 lines (249 loc) · 11.5 KB
/
trainer_rl_typeloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import time
from argparse import ArgumentParser
import torch.optim as optim
import torch.utils.data
from data.load_data import load_data,Dataset
from data import preprocess
from model.model_b3_p import Reab3p16
from model.model_plusMLP import WildRelationNet
from rl.ddpg import *
from rl.help_function import *
from rl.qlearning import *
import utils
from tensorboard import TensorBoard
code = ['shape', 'line', "color", 'number', 'position', 'size',
'type', 'progression', "xor", "or", 'and', 'consistent_union']
logger=utils.get_logger()
def init_weights(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
torch.nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
nn.init.constant_(m.bias, 0)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('BatchNorm') != -1:
m.weight.data.fill_(1)
m.bias.data.zero_()
elif classname.find('Linear') != -1:
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data = torch.ones(m.bias.data.size())
def save_state(state, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(state, path)
def averagenum(num):
nsum = 0
for i in range(len(num)):
nsum += num[i]
return nsum / len(num)
def adjust_learning_rate(optimizer, epoch, lr_steps,n):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
decay = 0.2
if n>1:
for param_group in optimizer.module.param_groups:
param_group['lr'] = decay * param_group['lr']
print(("epoch %d : lr=%.5f") % (epoch, param_group['lr']))
if epoch>15:
param_group['momentum'] = 0.9
param_group['weight_decay'] = decay * param_group['lr']
else:
for param_group in optimizer.param_groups:
param_group['lr'] = decay * param_group['lr']
param_group['weight_decay'] = decay * param_group['lr']
print(("epoch %d : lr=%.5f") % (epoch, param_group['lr']))
if epoch>15:
param_group['momentum'] = 0.9
def main(args):
# Step 1: init data folders
'''if os.path.exists('save_state/'+args.regime+'/normalization_stats.pkl'):
print('Loading normalization stats')
x_mean, x_sd = misc.load_file('save_state/'+args.regime+'/normalization_stats.pkl')
else:
x_mean, x_sd = preprocess.save_normalization_stats(args.regime)
print('x_mean: %.3f, x_sd: %.3f' % (x_mean, x_sd))'''
val_loader=load_data(args, "val")
tb=TensorBoard(args.model_dir)
# Step 2: init neural networks
print("network is:",args.net)
if args.net == 'Reab3p16':
model = Reab3p16(args)
elif args.net=='RN_mlp':
model =WildRelationNet()
if args.gpunum > 1:
model = nn.DataParallel(model, device_ids=range(args.gpunum))
weights_path = args.path_weight+"/"+args.load_weight
if os.path.exists(weights_path) and args.restore:
pretrained_dict = torch.load(weights_path)
model_dict = model.state_dict()
pretrained_dict1 = {}
for k, v in pretrained_dict.items():
if k in model_dict:
pretrained_dict1[k] = v
#print(k)
model_dict.update(pretrained_dict1)
model.load_state_dict(model_dict)
print('load weight')
style_raven={65:0, 129:1, 257:2, 66:3, 132:4, 36:5, 258:6, 136:7, 264:8, 72:9, 130:10
, 260:11, 40:12, 34:13, 49:14, 18:15, 20:16, 24:17}
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr,momentum=args.mo, weight_decay=5e-4)
if args.gpunum>1:
optimizer = nn.DataParallel(optimizer, device_ids=range(args.gpunum))
iter_count = 1
epoch_count = 1
#iter_epoch=int(len(train_files) / args.batch_size)
print(time.strftime('%H:%M:%S', time.localtime(time.time())), 'training')
style_raven_len = len(style_raven)
if args.rl_style=="dqn":
dqn = DQN()
elif args.rl_style=="ddpg":
ram = MemoryBuffer(1000)
ddpg = Trainer(style_raven_len*4+2, style_raven_len, 1, ram)
alpha_1=0.1
if args.rl_style=="dqn":
a = dqn.choose_action([0.5] * 3) # TODO
elif args.rl_style=="ddpg":
action_ = ddpg.get_exploration_action(np.zeros([style_raven_len*4+2]).astype(np.float32),alpha_1)
if args.type_loss:loss_fn=nn.BCELoss()
best_acc=0.0
while True:
since=time.time()
print(action_)
for i in range(style_raven_len):
tb.scalar_summary("action/a"+str(i), action_[i], epoch_count)
data_files = preprocess.provide_data(args.regime, style_raven_len, action_,style_raven)
train_files = [data_file for data_file in data_files if 'train' in data_file]
print("train_num:", len(train_files))
train_loader = torch.utils.data.DataLoader(Dataset(args,train_files), batch_size=args.batch_size, shuffle=True,
num_workers=args.numwork)
model.train()
iter_epoch = int(len(train_files) / args.batch_size)
acc_part_train=np.zeros([style_raven_len,2]).astype(np.float32)
mean_loss_train= np.zeros([style_raven_len, 2]).astype(np.float32)
loss_train=0
for x, y,style,me in train_loader:
if x.shape[0]<10:
print(x.shape[0])
break
x, y ,meta = Variable(x).cuda(), Variable(y).cuda(), Variable(me).cuda()
if args.gpunum > 1:
optimizer.module.zero_grad()
else:
optimizer.zero_grad()
if args.type_loss:
pred_train, pred_meta= model(x)
else:
pred_train = model(x)
loss_ = F.nll_loss(pred_train, y,reduce=False)
loss=loss_.mean() if not args.type_loss else loss_.mean()+10*loss_fn(pred_meta,meta)
loss.backward()
if args.gpunum > 1:
optimizer.module.step()
else:
optimizer.step()
iter_count += 1
pred = pred_train.data.max(1)[1]
correct = pred.eq(y.data).cpu()
loss_train+=loss.item()
for num, style_pers in enumerate(style):
style_pers = style_pers[:-4].split("/")[-1].split("_")[3:]
for style_per in style_pers:
style_per=int(style_per)
if correct[num] == 1:
acc_part_train[style_per, 0] += 1
acc_part_train[style_per, 1] += 1
#mean_pred_train[style_per,0] += pred_train[num,y[num].item()].data.cpu()
#mean_pred_train[style_per, 1] += 1
mean_loss_train[style_per,0] += loss_[num].item()
mean_loss_train[style_per, 1] += 1
accuracy_total = correct.sum() * 100.0 / len(y)
if iter_count %10 == 0:
iter_c = iter_count % iter_epoch
print(time.strftime('%H:%M:%S', time.localtime(time.time())),
('train_epoch:%d,iter_count:%d/%d, loss:%.3f, acc:%.1f') % (
epoch_count, iter_c, iter_epoch, loss, accuracy_total))
tb.scalar_summary("train_loss",loss,iter_count)
loss_train=loss_train/len(train_files)
#mean_pred_train=[x[0]/ x[1] for x in mean_pred_train]
mean_loss_train=[x[0]/ x[1] for x in mean_loss_train]
acc_part_train = [x[0] / x[1] if x[1]!=0 else 0 for x in acc_part_train]
print(acc_part_train)
if epoch_count %args.lr_step ==0:
print("change lr")
adjust_learning_rate(optimizer, epoch_count, args.lr_step,args.gpunum)
time_elapsed = time.time() - since
print('train epoch in {:.0f}h {:.0f}m {:.0f}s'.format(
time_elapsed // 3600, time_elapsed // 60 % 60, time_elapsed % 60))
#acc_p=np.array([x[0]/x[1] for x in acc_part])
#print(acc_p)
with torch.no_grad():
model.eval()
accuracy_all = []
iter_test=0
acc_part_val = np.zeros([style_raven_len, 2]).astype(np.float32)
for x, y, style,me in val_loader:
iter_test+=1
x, y = Variable(x).cuda(), Variable(y).cuda()
pred,_ = model(x)
pred = pred.data.max(1)[1]
correct = pred.eq(y.data).cpu().numpy()
accuracy = correct.sum() * 100.0 / len(y)
for num, style_pers in enumerate(style):
style_pers = style_pers[:-4].split("/")[-1].split("_")[3:]
for style_per in style_pers:
style_per = int(style_per)
if correct[num] == 1:
acc_part_val[style_per, 0] += 1
acc_part_val[style_per, 1] += 1
accuracy_all.append(accuracy)
# if iter_test % 10 == 0:
#
# print(time.strftime('%H:%M:%S', time.localtime(time.time())),
# ('test_iter:%d, acc:%.1f') % (
# iter_test, accuracy))
accuracy_all = sum(accuracy_all) / len(accuracy_all)
acc_part_val = [x[0] / x[1] if x[1]!=0 else 0 for x in acc_part_val ]
baseline_rl=70
reward=np.mean(acc_part_val)*100-baseline_rl
tb.scalar_summary("valreward", reward,epoch_count)
action_list=[x for x in a]
cur_state=np.array(acc_part_val+acc_part_train+action_list+mean_loss_train
+[loss_train]+[epoch_count]).astype(np.float32)
#np.expand_dims(, axis=0)
if args.rl_style == "dqn":
a = dqn.choose_action(cur_state) # TODO
elif args.rl_style == "ddpg":
a = ddpg.get_exploration_action(cur_state,alpha_1)
if alpha_1<1:
alpha_1+=0.005#0.1
if epoch_count > 1:
if args.rl_style == "dqn":dqn.store_transition(last_state, a, reward , cur_state)
elif args.rl_style == "ddpg":ram.add(last_state, a, reward, cur_state)
if epoch_count > 1:
if args.rl_style == "dqn":dqn.learn()
elif args.rl_style == "ddpg":loss_actor, loss_critic=ddpg.optimize()
print('------------------------------------')
print('learn q learning')
print('------------------------------------')
tb.scalar_summary("loss_actor", loss_actor, epoch_count)
tb.scalar_summary("loss_critic", loss_critic, epoch_count)
last_state=cur_state
time_elapsed = time.time() - since
print('test epoch in {:.0f}h {:.0f}m {:.0f}s'.format(
time_elapsed // 3600, time_elapsed // 60 % 60, time_elapsed % 60))
print('------------------------------------')
print(('epoch:%d, acc:%.1f') % (epoch_count, accuracy_all))
print('------------------------------------')
if accuracy_all>best_acc:
best_acc=max(best_acc,accuracy_all)
#ddpg.save_models(args.model_dir + '/', epoch_count)
save_state(model.state_dict(), args.model_dir + "/epochbest")
epoch_count += 1
if epoch_count%20==0:
print("save weights")
ddpg.save_models(args.model_dir+'/',epoch_count )
save_state(model.state_dict(), args.model_dir+"/epoch"+str(epoch_count))