-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathpreprocessing.py
63 lines (47 loc) · 1.47 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import cv2
from scipy import ndimage
import math
def shift(img,sx,sy):
rows,cols = img.shape
M = np.float32([[1,0,sx],[0,1,sy]])
shifted = cv2.warpAffine(img,M,(cols,rows))
return shifted
def getBestShift(img):
cy,cx = ndimage.measurements.center_of_mass(img)
rows,cols = img.shape
shiftx = np.round(cols/2.0-cx).astype(int)
shifty = np.round(rows/2.0-cy).astype(int)
return shiftx,shifty
def preprocess(img):
img=255-np.array(img).reshape(28,28).astype(np.uint8)
(thresh, gray) = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
while np.sum(gray[0]) == 0:
gray = gray[1:]
while np.sum(gray[:,0]) == 0:
gray = np.delete(gray,0,1)
while np.sum(gray[-1]) == 0:
gray = gray[:-1]
while np.sum(gray[:,-1]) == 0:
gray = np.delete(gray,-1,1)
rows,cols = gray.shape
if rows > cols:
factor = 20.0/rows
rows = 20
cols = int(round(cols*factor))
gray = cv2.resize(gray, (cols,rows))
else:
factor = 20.0/cols
cols = 20
rows = int(round(rows*factor))
gray = cv2.resize(gray, (cols, rows))
colsPadding = (int(math.ceil((28-cols)/2.0)),int(math.floor((28-cols)/2.0)))
rowsPadding = (int(math.ceil((28-rows)/2.0)),int(math.floor((28-rows)/2.0)))
gray = np.lib.pad(gray,(rowsPadding,colsPadding),'constant')
shiftx,shifty = getBestShift(gray)
shifted = shift(gray,shiftx,shifty)
gray = shifted
img = gray.reshape(1,28,28).astype(np.float32)
img-= int(33.3952)
img/= int(78.6662)
return img