diff --git a/examples/text/ernie-3.0/cpp/README.md b/examples/text/ernie-3.0/cpp/README.md index 0882a90707..21c02e9132 100644 --- a/examples/text/ernie-3.0/cpp/README.md +++ b/examples/text/ernie-3.0/cpp/README.md @@ -12,18 +12,16 @@ ### 快速开始 -以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。 +以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) -```bash -# 下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/ernie-3.0/cpp +```bash mkdir build cd build -# 执行cmake,需要指定FASTDEPLOY_INSTALL_DIR为FastDeploy SDK的目录。 -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载AFQMC数据集的微调后的ERNIE 3.0模型以及词表 diff --git a/examples/text/uie/cpp/README.md b/examples/text/uie/cpp/README.md index cfb045d8a9..7b569eadc1 100644 --- a/examples/text/uie/cpp/README.md +++ b/examples/text/uie/cpp/README.md @@ -8,17 +8,15 @@ - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) ## 快速开始 -以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试。 +以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)。 ``` -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz - -cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/uie/cpp mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载uie-base模型以及词表 diff --git a/examples/vision/classification/paddleclas/cpp/README.md b/examples/vision/classification/paddleclas/cpp/README.md index 7d71f47237..0663404675 100644 --- a/examples/vision/classification/paddleclas/cpp/README.md +++ b/examples/vision/classification/paddleclas/cpp/README.md @@ -7,16 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/classification/paddleclas/cpp mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载ResNet50_vd模型文件和测试图片 diff --git a/examples/vision/classification/paddleclas/quantize/cpp/README.md b/examples/vision/classification/paddleclas/quantize/cpp/README.md index 681d1e3f70..3dced039ca 100644 --- a/examples/vision/classification/paddleclas/quantize/cpp/README.md +++ b/examples/vision/classification/paddleclas/quantize/cpp/README.md @@ -10,14 +10,15 @@ - 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署. - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.) -## 以量化后的ResNet50_Vd模型为例, 进行部署 +## 以量化后的ResNet50_Vd模型为例, 进行部署,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) 在本目录执行如下命令即可完成编译,以及量化模型部署. ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的ResNet50_Vd量化模型文件和测试图片 diff --git a/examples/vision/classification/resnet/cpp/README.md b/examples/vision/classification/resnet/cpp/README.md index 1180d26c9c..fe9c591085 100644 --- a/examples/vision/classification/resnet/cpp/README.md +++ b/examples/vision/classification/resnet/cpp/README.md @@ -7,16 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz -tar xvf fastdeploy-linux-x64-gpu-0.2.1.tgz -cd fastdeploy-linux-x64-gpu-0.2.1/examples/vision/classification/resnet/cpp mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.1 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载ResNet模型文件和测试图片 diff --git a/examples/vision/classification/yolov5cls/cpp/README.md b/examples/vision/classification/yolov5cls/cpp/README.md index e56a6c1af1..de21e6dc3a 100755 --- a/examples/vision/classification/yolov5cls/cpp/README.md +++ b/examples/vision/classification/yolov5cls/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的yolov5模型文件和测试图片 diff --git a/examples/vision/detection/nanodet_plus/cpp/README.md b/examples/vision/detection/nanodet_plus/cpp/README.md index 5d575457bb..bf980355d4 100644 --- a/examples/vision/detection/nanodet_plus/cpp/README.md +++ b/examples/vision/detection/nanodet_plus/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的NanoDetPlus模型文件和测试图片 diff --git a/examples/vision/detection/paddledetection/cpp/README.md b/examples/vision/detection/paddledetection/cpp/README.md index 95b640eead..63df0365a4 100644 --- a/examples/vision/detection/paddledetection/cpp/README.md +++ b/examples/vision/detection/paddledetection/cpp/README.md @@ -7,17 +7,17 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash 以ppyoloe为例进行推理部署 -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/detection/paddledetection/cpp -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PPYOLOE模型文件和测试图片 diff --git a/examples/vision/detection/paddledetection/quantize/cpp/README.md b/examples/vision/detection/paddledetection/quantize/cpp/README.md index 7e321003fc..793fc3938e 100644 --- a/examples/vision/detection/paddledetection/quantize/cpp/README.md +++ b/examples/vision/detection/paddledetection/quantize/cpp/README.md @@ -11,14 +11,15 @@ - 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署. - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.) -## 以量化后的PP-YOLOE-l模型为例, 进行部署 +## 以量化后的PP-YOLOE-l模型为例, 进行部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) 在本目录执行如下命令即可完成编译,以及量化模型部署. ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片 diff --git a/examples/vision/detection/scaledyolov4/cpp/README.md b/examples/vision/detection/scaledyolov4/cpp/README.md index 640eefb939..f40c205857 100644 --- a/examples/vision/detection/scaledyolov4/cpp/README.md +++ b/examples/vision/detection/scaledyolov4/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的ScaledYOLOv4模型文件和测试图片 diff --git a/examples/vision/detection/yolor/cpp/README.md b/examples/vision/detection/yolor/cpp/README.md index d245999424..89bccb487d 100644 --- a/examples/vision/detection/yolor/cpp/README.md +++ b/examples/vision/detection/yolor/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的YOLOR模型文件和测试图片 diff --git a/examples/vision/detection/yolov5/cpp/README.md b/examples/vision/detection/yolov5/cpp/README.md index cc88e3c351..ece3826a54 100644 --- a/examples/vision/detection/yolov5/cpp/README.md +++ b/examples/vision/detection/yolov5/cpp/README.md @@ -7,16 +7,16 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j - #下载官方转换好的yolov5模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg diff --git a/examples/vision/detection/yolov5/quantize/cpp/README.md b/examples/vision/detection/yolov5/quantize/cpp/README.md index ebe941a934..2555cee211 100644 --- a/examples/vision/detection/yolov5/quantize/cpp/README.md +++ b/examples/vision/detection/yolov5/quantize/cpp/README.md @@ -12,13 +12,14 @@ - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署. ## 以量化后的YOLOv5s模型为例, 进行部署 -在本目录执行如下命令即可完成编译,以及量化模型部署. +在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的yolov5s量化模型文件和测试图片 diff --git a/examples/vision/detection/yolov5lite/cpp/README.md b/examples/vision/detection/yolov5lite/cpp/README.md index cd1c46d783..43ec415807 100644 --- a/examples/vision/detection/yolov5lite/cpp/README.md +++ b/examples/vision/detection/yolov5lite/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的YOLOv5Lite模型文件和测试图片 diff --git a/examples/vision/detection/yolov6/cpp/README.md b/examples/vision/detection/yolov6/cpp/README.md index 00303ffa56..6a8a0d7c05 100644 --- a/examples/vision/detection/yolov6/cpp/README.md +++ b/examples/vision/detection/yolov6/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的YOLOv6模型文件和测试图片 diff --git a/examples/vision/detection/yolov6/quantize/cpp/README.md b/examples/vision/detection/yolov6/quantize/cpp/README.md index cc6f7c9b28..5859b7de19 100644 --- a/examples/vision/detection/yolov6/quantize/cpp/README.md +++ b/examples/vision/detection/yolov6/quantize/cpp/README.md @@ -12,13 +12,14 @@ - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署. ## 以量化后的YOLOv6s模型为例, 进行部署 -在本目录执行如下命令即可完成编译,以及量化模型部署. +在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的yolov6s量化模型文件和测试图片 diff --git a/examples/vision/detection/yolov7/cpp/README.md b/examples/vision/detection/yolov7/cpp/README.md index 08c59ac763..2cff4c73bc 100644 --- a/examples/vision/detection/yolov7/cpp/README.md +++ b/examples/vision/detection/yolov7/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的yolov7模型文件和测试图片 diff --git a/examples/vision/detection/yolov7/quantize/cpp/README.md b/examples/vision/detection/yolov7/quantize/cpp/README.md index bad31d532e..bf676253ae 100644 --- a/examples/vision/detection/yolov7/quantize/cpp/README.md +++ b/examples/vision/detection/yolov7/quantize/cpp/README.md @@ -12,13 +12,14 @@ - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署. ## 以量化后的YOLOv7模型为例, 进行部署 -在本目录执行如下命令即可完成编译,以及量化模型部署. +在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的yolov7量化模型文件和测试图片 diff --git a/examples/vision/detection/yolov7end2end_ort/cpp/README.md b/examples/vision/detection/yolov7end2end_ort/cpp/README.md index 63747cb32d..b5c18f183e 100644 --- a/examples/vision/detection/yolov7end2end_ort/cpp/README.md +++ b/examples/vision/detection/yolov7end2end_ort/cpp/README.md @@ -7,16 +7,16 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j -# 如果预编译库还没有支持该模型,请从develop分支源码编译最新的SDK #下载官方转换好的yolov7模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-end2end-ort-nms.onnx diff --git a/examples/vision/detection/yolov7end2end_trt/cpp/README.md b/examples/vision/detection/yolov7end2end_trt/cpp/README.md index 24563efbaf..52baee9233 100644 --- a/examples/vision/detection/yolov7end2end_trt/cpp/README.md +++ b/examples/vision/detection/yolov7end2end_trt/cpp/README.md @@ -7,16 +7,16 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j -# 若预编译库没有支持该类 则请自行从源码develop分支编译最新的FastDeploy C++ SDK #下载官方转换好的yolov7模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-end2end-trt-nms.onnx diff --git a/examples/vision/detection/yolox/cpp/README.md b/examples/vision/detection/yolox/cpp/README.md index e9ee592389..3cc857aec4 100644 --- a/examples/vision/detection/yolox/cpp/README.md +++ b/examples/vision/detection/yolox/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的YOLOX模型文件和测试图片 diff --git a/examples/vision/facealign/face_landmark_1000/cpp/README.md b/examples/vision/facealign/face_landmark_1000/cpp/README.md index 033f54164d..755a206646 100644 --- a/examples/vision/facealign/face_landmark_1000/cpp/README.md +++ b/examples/vision/facealign/face_landmark_1000/cpp/README.md @@ -7,11 +7,12 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,保证 FastDeploy 版本0.7.0以上(x.x.x >= 0.7.0)支持FaceLandmark1000模型 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x diff --git a/examples/vision/facealign/pfld/cpp/README.md b/examples/vision/facealign/pfld/cpp/README.md index 4138646d26..d061b010a5 100644 --- a/examples/vision/facealign/pfld/cpp/README.md +++ b/examples/vision/facealign/pfld/cpp/README.md @@ -7,11 +7,12 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,保证 FastDeploy 版本0.6.0以上(x.x.x >= 0.6.0)支持PFLD模型 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x diff --git a/examples/vision/facealign/pipnet/cpp/README.md b/examples/vision/facealign/pipnet/cpp/README.md index 3f11bf62b4..81778d7d5a 100644 --- a/examples/vision/facealign/pipnet/cpp/README.md +++ b/examples/vision/facealign/pipnet/cpp/README.md @@ -7,11 +7,12 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,保证 FastDeploy 版本0.7.0以上(x.x.x >= 0.7.0)支持PIPNet模型 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x diff --git a/examples/vision/facedet/retinaface/cpp/README.md b/examples/vision/facedet/retinaface/cpp/README.md index 9ab11da9a7..15d71d9a4e 100644 --- a/examples/vision/facedet/retinaface/cpp/README.md +++ b/examples/vision/facedet/retinaface/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的RetinaFace模型文件和测试图片 diff --git a/examples/vision/facedet/scrfd/cpp/README.md b/examples/vision/facedet/scrfd/cpp/README.md index 669da8c7bd..b59acc1edf 100644 --- a/examples/vision/facedet/scrfd/cpp/README.md +++ b/examples/vision/facedet/scrfd/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的SCRFD模型文件和测试图片 diff --git a/examples/vision/facedet/ultraface/cpp/README.md b/examples/vision/facedet/ultraface/cpp/README.md index 10fa2e95f5..8d512af0a9 100644 --- a/examples/vision/facedet/ultraface/cpp/README.md +++ b/examples/vision/facedet/ultraface/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的UltraFace模型文件和测试图片 diff --git a/examples/vision/facedet/yolov5face/cpp/README.md b/examples/vision/facedet/yolov5face/cpp/README.md index 5be8d9ecda..a1df0620dd 100644 --- a/examples/vision/facedet/yolov5face/cpp/README.md +++ b/examples/vision/facedet/yolov5face/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的YOLOv5Face模型文件和测试图片 diff --git a/examples/vision/faceid/adaface/cpp/README.md b/examples/vision/faceid/adaface/cpp/README.md index 95b939a2ed..9c28d584dd 100644 --- a/examples/vision/faceid/adaface/cpp/README.md +++ b/examples/vision/faceid/adaface/cpp/README.md @@ -8,15 +8,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -# “如果预编译库不包含本模型,请从最新代码编译SDK” mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载测试图片 diff --git a/examples/vision/faceid/insightface/cpp/README.md b/examples/vision/faceid/insightface/cpp/README.md index 71a9261cc0..341478b7cd 100644 --- a/examples/vision/faceid/insightface/cpp/README.md +++ b/examples/vision/faceid/insightface/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的ArcFace模型文件和测试图片 diff --git a/examples/vision/headpose/fsanet/cpp/README.md b/examples/vision/headpose/fsanet/cpp/README.md index 1a3a517699..51e0a179db 100755 --- a/examples/vision/headpose/fsanet/cpp/README.md +++ b/examples/vision/headpose/fsanet/cpp/README.md @@ -7,11 +7,12 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,保证 FastDeploy 版本0.6.0以上(x.x.x >= 0.6.0)支持FSANet模型 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x diff --git a/examples/vision/keypointdetection/det_keypoint_unite/cpp/README.md b/examples/vision/keypointdetection/det_keypoint_unite/cpp/README.md index a7ccba9035..6312581274 100644 --- a/examples/vision/keypointdetection/det_keypoint_unite/cpp/README.md +++ b/examples/vision/keypointdetection/det_keypoint_unite/cpp/README.md @@ -9,15 +9,15 @@ - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/keypointdetection/tiny_pose/cpp/ mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-TinyPose和PP-PicoDet模型文件和测试图片 diff --git a/examples/vision/keypointdetection/tiny_pose/cpp/README.md b/examples/vision/keypointdetection/tiny_pose/cpp/README.md index d2a559c341..eba5501933 100644 --- a/examples/vision/keypointdetection/tiny_pose/cpp/README.md +++ b/examples/vision/keypointdetection/tiny_pose/cpp/README.md @@ -9,15 +9,15 @@ - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/keypointdetection/tiny_pose/cpp/ mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-TinyPose模型文件和测试图片 diff --git a/examples/vision/matting/modnet/cpp/README.md b/examples/vision/matting/modnet/cpp/README.md index 0fd773361a..25f37c1077 100644 --- a/examples/vision/matting/modnet/cpp/README.md +++ b/examples/vision/matting/modnet/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz - -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载官方转换好的MODNet模型文件和测试图片 diff --git a/examples/vision/matting/ppmatting/cpp/README.md b/examples/vision/matting/ppmatting/cpp/README.md index 4ec03d2bf1..e8b919f926 100644 --- a/examples/vision/matting/ppmatting/cpp/README.md +++ b/examples/vision/matting/ppmatting/cpp/README.md @@ -7,15 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上 PP-Matting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库) +以Linux上 PP-Matting 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/matting/ppmatting/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-Matting模型文件和测试图片 diff --git a/examples/vision/matting/rvm/cpp/README.md b/examples/vision/matting/rvm/cpp/README.md index c236a717b5..d8e00400c1 100755 --- a/examples/vision/matting/rvm/cpp/README.md +++ b/examples/vision/matting/rvm/cpp/README.md @@ -5,17 +5,17 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上 RobustVideoMatting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库) +以Linux上 RobustVideoMatting 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) 本目录下提供`infer.cc`快速完成RobustVideoMatting在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成 ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/matting/rvm/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载RobustVideoMatting模型文件和测试图片以及视频 diff --git a/examples/vision/ocr/PP-OCRv2/cpp/README.md b/examples/vision/ocr/PP-OCRv2/cpp/README.md index 9f034c09e6..afc35d50ba 100644 --- a/examples/vision/ocr/PP-OCRv2/cpp/README.md +++ b/examples/vision/ocr/PP-OCRv2/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ``` mkdir build cd build -wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j diff --git a/examples/vision/ocr/PP-OCRv3/cpp/README.md b/examples/vision/ocr/PP-OCRv3/cpp/README.md index 0d397d4cf7..3692658090 100644 --- a/examples/vision/ocr/PP-OCRv3/cpp/README.md +++ b/examples/vision/ocr/PP-OCRv3/cpp/README.md @@ -7,14 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ``` mkdir build cd build -wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j diff --git a/examples/vision/segmentation/paddleseg/cpp/README.md b/examples/vision/segmentation/paddleseg/cpp/README.md index 01ff7b33fc..926452ad02 100644 --- a/examples/vision/segmentation/paddleseg/cpp/README.md +++ b/examples/vision/segmentation/paddleseg/cpp/README.md @@ -9,15 +9,15 @@ 【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting) -以Linux上推理为例,在本目录执行如下命令即可完成编译测试 +以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/segmentation/paddleseg/cpp/ mkdir build cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载Unet模型文件和测试图片 diff --git a/examples/vision/segmentation/paddleseg/quantize/cpp/README.md b/examples/vision/segmentation/paddleseg/quantize/cpp/README.md index 70e6a839da..34b98790f4 100644 --- a/examples/vision/segmentation/paddleseg/quantize/cpp/README.md +++ b/examples/vision/segmentation/paddleseg/quantize/cpp/README.md @@ -11,13 +11,14 @@ - 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.) ## 以量化后的PP_LiteSeg_T_STDC1_cityscapes模型为例, 进行部署 -在本目录执行如下命令即可完成编译,以及量化模型部署. +在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz -tar xvf fastdeploy-linux-x64-0.7.0.tgz -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0 +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j #下载FastDeloy提供的PP_LiteSeg_T_STDC1_cityscapes量化模型文件和测试图片 diff --git a/examples/vision/sr/basicvsr/cpp/README.md b/examples/vision/sr/basicvsr/cpp/README.md index ff5e17a990..802a7ac587 100644 --- a/examples/vision/sr/basicvsr/cpp/README.md +++ b/examples/vision/sr/basicvsr/cpp/README.md @@ -6,16 +6,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上BasicVSR推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库) +以Linux上BasicVSR推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -# fastdeploy版本 >= 0.7.0 -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/basicvsr/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载BasicVSR模型文件和测试视频 diff --git a/examples/vision/sr/edvr/cpp/README.md b/examples/vision/sr/edvr/cpp/README.md index c40b8cf83b..ec917b824f 100644 --- a/examples/vision/sr/edvr/cpp/README.md +++ b/examples/vision/sr/edvr/cpp/README.md @@ -7,16 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上EDVR推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库) +以Linux上EDVR推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -# fastdeploy版本 >= 0.7.0 -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/edvr/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载EDVR模型文件和测试视频 diff --git a/examples/vision/sr/ppmsvsr/cpp/README.md b/examples/vision/sr/ppmsvsr/cpp/README.md index 2130ffe7e8..712264a36d 100644 --- a/examples/vision/sr/ppmsvsr/cpp/README.md +++ b/examples/vision/sr/ppmsvsr/cpp/README.md @@ -7,16 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上 PP-MSVSR 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库) +以Linux上 PP-MSVSR 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -# fastdeploy版本 >= 0.7.0 -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/ppmsvsr/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-MSVSR模型文件和测试视频 diff --git a/examples/vision/tracking/pptracking/cpp/README.md b/examples/vision/tracking/pptracking/cpp/README.md index 45b26d0ca5..af26e1fff4 100644 --- a/examples/vision/tracking/pptracking/cpp/README.md +++ b/examples/vision/tracking/pptracking/cpp/README.md @@ -7,15 +7,15 @@ - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) -以Linux上 PP-Tracking 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)下载CPU推理库) +以Linux上 PP-Tracking 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash -#下载SDK,编译模型examples代码(SDK中包含了examples代码) -wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz -tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz -cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/tracking/pptracking/cpp/ -mkdir build && cd build -cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0 +mkdir build +cd build +# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 +wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz +tar xvf fastdeploy-linux-x64-x.x.x.tgz +cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-Tracking模型文件和测试视频