-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_spt.py
521 lines (435 loc) · 25.5 KB
/
train_spt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import argparse
import datetime
import torch.backends.cudnn as cudnn
import json
import yaml
from pathlib import Path
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.utils import NativeScaler
from lib.datasets import build_dataset
from engine import *
from lib.samplers import RASampler
from model.vision_transformer_timm import VisionTransformerSepQKV
import model as models
from timm.models import load_checkpoint
try:
#SLUMRM
from mmcv.runner import init_dist
except ModuleNotFoundError as e:
print(f'{e}. Cannot use multiple-node training...')
import os
from timm.utils.clip_grad import dispatch_clip_grad
from collections import OrderedDict
from lib import utils
import time
from lib.utils import save_to_csv
def get_args_parser():
parser = argparse.ArgumentParser('AutoFormer training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--model_name', required=True, type=str)
# custom parameters
parser.add_argument('--platform', default='pai', type=str, choices=['itp', 'pai', 'aml'],
help='Name of model to train')
parser.add_argument('--teacher_model', default='', type=str,
help='Name of teacher model to train')
parser.add_argument('--relative_position', action='store_true')
parser.add_argument('--gp', action='store_true')
parser.add_argument('--change_qkv', action='store_true')
parser.add_argument('--max_relative_position', type=int, default=14, help='max distance in relative position embedding')
# Model parameters
parser.add_argument('--model', default='', type=str, metavar='MODEL',
help='Name of model to train')
# AutoFormer config
parser.add_argument('--mode', type=str, default='super', choices=['super', 'vp','retrain','search'], help='mode of AutoFormer')
parser.add_argument('--input-size', default=224, type=int)
parser.add_argument('--patch_size', default=16, type=int)
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
parser.add_argument('--rpe_type', type=str, default='bias', choices=['bias', 'direct'])
parser.add_argument('--post_norm', action='store_true')
parser.add_argument('--no_abs_pos', action='store_true')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--lr-power', type=float, default=1.0,
help='power of the polynomial lr scheduler')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Dataset parameters
parser.add_argument('--data-path', default='./data/imagenet/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='./',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='path to the pre-trained model')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--amp', action='store_true')
parser.add_argument('--no-amp', action='store_false', dest='amp')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--no_aug', action='store_true')
parser.add_argument('--val_interval', default=1, type=int, help='validataion interval')
parser.add_argument('--inception',action='store_true')
parser.add_argument('--direct_resize',action='store_true')
# SPT params
parser.add_argument('--freeze_stage', action='store_true')
parser.add_argument('--sensitivity_path', default='', type=str,)
parser.add_argument('--scaler', default='naive', type=str,)
parser.add_argument('--low_rank_dim', default=8, type=int, help='The rank of Adapter or LoRA')
parser.add_argument('--alpha', default=10., type=float, help='hyper-parameter, the easiness level for a matrix to be structurally tuned.')
parser.add_argument('--beta', default=5., type=float, help='hyper-parameter, the easiness level for a vector to be structurally tuned.')
parser.add_argument('--test', action='store_true', help='using test-split or validation split')
parser.add_argument('--save_best', action='store_true')
parser.add_argument('--block', type=str, default='BlockSPTParallel')
parser.add_argument('--get_sensitivity', action='store_true')
parser.add_argument('--structured_vector', action='store_true', help='trick to also tune vectors structually, directly tune all parameters of these vectors')
parser.add_argument('--exp_name', default='', type=str)
parser.add_argument('--freeze_kwd', default='patch_embed', type=str, help='freeze patch embedding helps')
parser.add_argument('--structured_type', type=str, default='lora', help="structured tuning module to use")
parser.add_argument('--no_structured_drop_out', action='store_true')
parser.add_argument('--no_structured_drop_path', action='store_true')
parser.add_argument('--structured_only', action='store_true', help="structured tuning module to use")
parser.add_argument('--sensitivity_batch_num', default=16, type=int,)
parser.add_argument('--local_rank', default=0, type=int,)
return parser
def main(args):
if args.launcher == 'none':
args.distributed = False
else:
args.distributed = True
init_dist(launcher=args.launcher)
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
print(args)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args,)
dataset_val, _ = build_dataset(is_train=False, args=args,)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, batch_size=int(2 * args.batch_size),
sampler=sampler_val, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=False
)
print(f"{args.data_set} dataset, train: {len(dataset_train)}, evaluation: {len(dataset_val)}")
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
print('mixup_active',mixup_active)
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if args.get_sensitivity:
# Always getting sensitivity from the training split
dataset_sensitivity, _ = build_dataset(is_train=True, args=args, )
sampler_init = torch.utils.data.SequentialSampler(dataset_sensitivity)
data_loader_sensitivity = torch.utils.data.DataLoader(
dataset_sensitivity, sampler=sampler_init,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
model = models.__dict__[args.model_name](img_size=args.input_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
freeze_backbone=args.freeze_stage,
num_classes=args.nb_classes
)
else:
param_info = torch.load(args.sensitivity_path, map_location='cpu')
tuned_vectors = param_info['tuned_vectors']
tuned_matrices = param_info['tuned_matrices']
print('Both structured and unstructured tuning', )
fully_fine_tuned_keys = []
fully_fine_tuned_keys.extend(tuned_vectors)
fully_fine_tuned_keys.extend(['head.weight', 'head.bias', 'cls_token'])
# Setting up unstructured tuning
unstructured_name_shapes = param_info['unstructured_name_shapes']
unstructured_indexes = param_info['unstructured_indexes']
unstructured_params = param_info['unstructured_params']
if unstructured_params == 0:
grad_mask = None
else:
grad_mask = torch.cat(
[torch.zeros(unstructured_name_shapes[key]).flatten() for key in unstructured_name_shapes.keys()])
grad_mask[unstructured_indexes] = 1.
grad_mask = grad_mask.split([np.cumprod(list(shape))[-1] for shape in unstructured_name_shapes.values()])
grad_mask = {k: (mask.view(v) != 0).nonzero() for mask, (k, v) in
zip(grad_mask, unstructured_name_shapes.items())}
model = models.__dict__[args.model_name](img_size=args.input_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
freeze_backbone=args.freeze_stage,
structured_list=tuned_matrices,
tuned_vectors=tuned_vectors,
low_rank_dim=args.low_rank_dim,
block=args.block,
num_classes=args.nb_classes,
structured_type=args.structured_type,
structured_bias=args.structured_vector,
unstructured_indexes=grad_mask,
unstructured_shapes=unstructured_name_shapes,
fully_fine_tuned_keys=fully_fine_tuned_keys,
no_structured_drop_out=args.no_structured_drop_out,
no_structured_drop_path=args.no_structured_drop_path,
)
train_engine = train_one_epoch
test_engine = evaluate
if args.resume:
# Hard-coded pre-trained model name
if '.pth' in args.resume:
if args.resume.endswith('mae_pretrain_vit_base.pth'):
state_dict = torch.load(args.resume, map_location='cpu')['model']
new_dict = OrderedDict()
for name in state_dict.keys():
if 'attn.qkv.' in name:
new_dict[name.replace('qkv', 'q')] = state_dict[name][:state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'k')] = state_dict[name][state_dict[name].shape[0] // 3:-state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'v')] = state_dict[name][-state_dict[name].shape[0] // 3:]
else:
new_dict[name] = state_dict[name]
msg = model.load_state_dict(new_dict, strict=False)
print('Resuming from MAE model: ', msg)
elif args.resume.endswith('linear-vit-b-300ep.pth'):
state_dict = torch.load(args.resume, map_location='cpu')['state_dict']
new_dict = OrderedDict()
for name in state_dict.keys():
if 'attn.qkv.' in name:
new_dict[name.replace('qkv', 'q').split('module.')[1]] = state_dict[name][:state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'k').split('module.')[1]] = state_dict[name][state_dict[name].shape[0] // 3:-state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'v').split('module.')[1]] = state_dict[name][-state_dict[name].shape[0] // 3:]
elif 'head.' in name:
continue
else:
new_dict[name.split('module.')[1]] = state_dict[name]
msg = model.load_state_dict(new_dict, strict=False)
print('Resuming from MoCo model: ', msg)
elif args.resume.endswith('swin_base_patch4_window7_224_22k.pth'):
state_dict = torch.load(args.resume, map_location='cpu')['model']
new_dict = OrderedDict()
for name in state_dict.keys():
if 'attn.qkv.' in name:
new_dict[name.replace('qkv', 'q')] = state_dict[name][:state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'k')] = state_dict[name][state_dict[name].shape[0] // 3:-state_dict[name].shape[0] // 3]
new_dict[name.replace('qkv', 'v')] = state_dict[name][-state_dict[name].shape[0] // 3:]
elif 'head.' in name:
continue
else:
new_dict[name] = state_dict[name]
if args.nb_classes != model.head.weight.shape[0]:
model.reset_classifier(args.nb_classes)
msg = model.load_state_dict(new_dict, strict=False)
print('Resuming from Swin model: ', msg)
else:
raise NotImplementedError
else:
load_checkpoint(model, args.resume)
if args.nb_classes != model.head.weight.shape[0]:
model.reset_classifier(args.nb_classes)
model.to(device)
model_ema = None
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
if args.get_sensitivity:
get_sensitivity(
model, criterion, data_loader_sensitivity, device,
amp=args.amp, dataset=args.data_set,
structured_vector=args.structured_vector, low_rank_dim=args.low_rank_dim,
exp_name=args.exp_name, structured_type=args.structured_type,
alpha=args.alpha, beta=args.beta, structured_only=args.structured_only,
sensitivity_batch_num=args.sensitivity_batch_num
)
return
optimizer = utils.build_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True)
# save config for later experiments
with open(output_dir / "config.yaml", 'w') as f:
f.write(args_text)
if args.eval:
test_stats = test_engine(data_loader_val, model, device, amp=args.amp)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
print("Start training")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_engine(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
amp=args.amp, scaler=args.scaler
)
lr_scheduler.step(epoch)
if epoch % args.val_interval == 0 or epoch >= args.epochs-10: # Evaluate more in the last a few epochs
test_stats = test_engine(data_loader_val, model, device, amp=args.amp)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(
f"[{args.exp_name}] Max accuracy on the {args.data_set} dataset {len(dataset_val)} with ({args.opt}, {args.lr}, {args.weight_decay}), {max_accuracy:.2f}%")
# Save to csv
save_to_csv('csvs/' + args.exp_name, args.data_set, "%.2f" % round(max_accuracy,2))
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SPT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)