-
Notifications
You must be signed in to change notification settings - Fork 15
/
retinanet_litv2_m_fpn_1x_coco.py
44 lines (40 loc) · 1.13 KB
/
retinanet_litv2_m_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
_base_ = [
'../_base_/models/retinanet_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
backbone=dict(
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
drop_path_rate=0.2,
patch_norm=True,
use_checkpoint=False,
alpha=0.9,
local_ws=[0, 0, 2, 1],
init_cfg=dict(
type='Pretrained',
checkpoint='https://github.com/ziplab/LITv2/releases/download/v1.0/litv2_m.pth')
),
neck=dict(
type='FPN',
in_channels=[96, 192, 384, 768],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5)
)
# optimizer
optimizer = dict(type='AdamW', lr=0.0001, weight_decay=0.0001,
paramwise_cfg=dict({'norm': dict(decay_mult=0.)}))
lr_config = dict(step=[8, 11])
runner = dict(type='EpochBasedRunnerAmp', max_epochs=12)
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True,
)