forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_yolov4.cpp
599 lines (528 loc) · 16.9 KB
/
tm_yolov4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2021, OPEN AI LAB
*/
#include <cstdio>
#include <cstdlib>
#include <cstdio>
#include <vector>
#ifdef _MSC_VER
#define NOMINMAX
#endif
#include <algorithm>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
float s_anchors[] = {12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401};
typedef struct layer
{
int total_anchor;
int box, c, h, w;
int out_n, out_c, out_h, out_w;
int classes;
int inputs;
int outputs;
int* anchor_mask;
float* anchors;
float* output;
int coords;
} layer;
typedef struct
{
float x, y, w, h;
} box;
typedef struct
{
box bbox;
float x, y, w, h;
int classes;
float* prob;
float objectness;
int sort_class;
} detection;
layer make_darknet_layer(int w, int h, int net_w, int net_h, int n, int total, int classes)
{
layer l = {0};
l.box = n;
l.total_anchor = total;
l.h = h;
l.w = w;
l.c = n * (classes + 4 + 1);
l.out_w = l.w;
l.out_h = l.h;
l.out_c = l.c;
l.classes = classes;
l.inputs = l.w * l.h * l.c;
l.anchors = ( float* )calloc(total * 2, sizeof(float));
l.anchor_mask = ( int* )calloc(n, sizeof(int));
if (9 == total)
{
for (int i = 0; i < total * 2; ++i)
{
l.anchors[i] = s_anchors[i];
}
if (l.w == net_w / 32)
{
int j = 6;
for (int i = 0; i < l.box; ++i)
l.anchor_mask[i] = j++;
}
if (l.w == net_w / 16)
{
int j = 3;
for (int i = 0; i < l.box; ++i)
l.anchor_mask[i] = j++;
}
if (l.w == net_w / 8)
{
int j = 0;
for (int i = 0; i < l.box; ++i)
l.anchor_mask[i] = j++;
}
}
l.outputs = l.inputs;
l.output = ( float* )calloc(l.outputs, sizeof(float));
return l;
}
int entry_index(layer l, int box, int channel, int loc)
{
return box * l.w * l.h * (4 + l.classes + 1) + channel * l.w * l.h + loc;
}
inline void logistic_cpu(float* input, int size)
{
for (int i = 0; i < size; ++i)
{
input[i] = 1.f / (1.f + expf(-input[i]));
}
}
inline float logistic_cpu(float input)
{
return 1.f / (1.f + expf(-input));
}
void decodebox(layer l, box& b, int box_index, int row, int col, int input_w, int input_h)
{
b.x = (col + logistic_cpu(b.x)) / l.w;
b.y = (row + logistic_cpu(b.y)) / l.h;
b.w = exp(b.w) * l.anchors[2 * l.anchor_mask[box_index]] / input_w;
b.h = exp(b.h) * l.anchors[2 * l.anchor_mask[box_index] + 1] / input_h;
}
void correct_yolo_boxes(std::vector<detection*>& dets, int n, int w, int h, int netw, int neth)
{
int i;
int new_w = 0;
int new_h = 0;
if ((( float )netw / w) < (( float )neth / h))
{
new_w = netw;
new_h = (h * netw) / w;
}
else
{
new_h = neth;
new_w = (w * neth) / h;
}
for (i = 0; i < n; ++i)
{
box b = dets[i]->bbox;
b.x = (b.x - (netw - new_w) / 2. / netw) / (( float )new_w / netw);
b.y = (b.y - (neth - new_h) / 2. / neth) / (( float )new_h / neth);
b.w *= ( float )netw / new_w;
b.h *= ( float )neth / new_h;
dets[i]->bbox = b;
}
}
std::vector<detection*> forward_darknet_layer_cpu(const float* input, layer l, int img_w, int img_h, int net_w,
int net_h, const float s_thresh)
{
std::vector<detection*> dets;
memcpy(( void* )l.output, ( void* )input, sizeof(float) * l.inputs);
for (int i = 0; i < l.box; i++)
{
int index = entry_index(l, i, 4, 0);
logistic_cpu(l.output + index, l.w * l.h);
for (size_t loc = 0; loc < (size_t)l.w * l.h; loc++)
{
if (l.output[index + loc] > s_thresh)
{
/* row col */
int row = loc / l.w;
int col = loc % l.w;
detection* temp_detection = ( detection* )calloc(1, sizeof(detection));
/* objectness */
temp_detection->objectness = l.output[index + loc];
/* bbox */
temp_detection->bbox.x = l.output[entry_index(l, i, 0, loc)];
temp_detection->bbox.y = l.output[entry_index(l, i, 1, loc)];
temp_detection->bbox.w = l.output[entry_index(l, i, 2, loc)];
temp_detection->bbox.h = l.output[entry_index(l, i, 3, loc)];
decodebox(l, temp_detection->bbox, i, row, col, net_w, net_h);
/* classes_prob */
temp_detection->prob = ( float* )calloc(l.classes, sizeof(float));
for (int j = 5; j < l.classes + 5; j++)
{
int grid_index = entry_index(l, i, j, loc);
logistic_cpu(l.output + grid_index, 1);
temp_detection->prob[j - 5] = l.output[grid_index] > s_thresh ? l.output[grid_index] : 0;
}
/* classes_num */
temp_detection->classes = l.classes;
dets.push_back(temp_detection);
}
}
}
if (dets.size() > 0)
{
correct_yolo_boxes(dets, dets.size(), img_w, img_h, net_w, net_h);
}
return dets;
}
int nms_comparator(const detection* pa, const detection* pb)
{
float diff = 0;
if (pb->sort_class >= 0)
{
diff = pb->prob[pb->sort_class] - pb->prob[pb->sort_class];
}
else
{
diff = pb->objectness - pb->objectness;
}
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
return 0;
}
float overlap(float x1, float w1, float x2, float w2)
{
float l1 = x1 - w1 / 2;
float l2 = x2 - w2 / 2;
float left = l1 > l2 ? l1 : l2;
float r1 = x1 + w1 / 2;
float r2 = x2 + w2 / 2;
float right = r1 < r2 ? r1 : r2;
return right - left;
}
float box_intersection(box a, box b)
{
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
if (w < 0 || h < 0)
return 0;
float area = w * h;
return area;
}
float box_union(box a, box b)
{
float i = box_intersection(a, b);
float u = a.w * a.h + b.w * b.h - i;
return u;
}
float box_iou(box a, box b)
{
return box_intersection(a, b) / box_union(a, b);
}
void do_nms_sort(std::vector<detection*>& dets, int total, int classes, float thresh)
{
int i, j, k;
k = total - 1;
for (i = 0; i <= k; ++i)
{
if (dets[i]->objectness == 0)
{
detection* swap = dets[i];
dets[i] = dets[k];
dets[k] = swap;
--k;
--i;
}
}
total = k + 1;
for (k = 0; k < classes; ++k)
{
for (i = 0; i < total; ++i)
{
dets[i]->sort_class = k;
}
std::sort(dets.begin(), dets.end(), nms_comparator);
for (i = 0; i < total; ++i)
{
if (dets[i]->prob[k] == 0)
continue;
box a = dets[i]->bbox;
for (j = i + 1; j < total; ++j)
{
box b = dets[j]->bbox;
if (box_iou(a, b) > thresh)
{
dets[j]->prob[k] = 0;
}
}
}
}
}
void get_input_data_darknet(const char* image_file, float* input_data, int net_h, int net_w)
{
int size = 3 * net_w * net_h;
image sized;
image im = load_image_stb(image_file, 3);
for (int i = 0; i < im.c * im.h * im.w; i++)
{
im.data[i] = im.data[i] / 255;
}
sized = letterbox(im, net_w, net_h);
memcpy(input_data, sized.data, size * sizeof(float));
free_image(sized);
free_image(im);
}
static const char* class_names[] = {"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
"mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"};
void show_usage()
{
fprintf(
stderr,
"[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count] [-s size:608:512] \n");
}
int main(int argc, char* argv[])
{
const char* model_file = nullptr;
const char* image_file = nullptr;
int numBBoxes = 3;
int total_numAnchors = 9;
int net_h = 608;
int net_w = 608;
int repeat_count = 1;
int num_thread = 1;
const int classes = 80;
const float s_thresh = 0.5;
const float s_hier_thresh = 0.5;
const float s_nms = 0.45;
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:s:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = std::strtoul(optarg, nullptr, 10);
break;
case 't':
num_thread = std::strtoul(optarg, nullptr, 10);
break;
case 's':
net_w = std::strtoul(optarg, nullptr, 10);
net_h = net_w;
fprintf(stderr, "set net input size: %d %d\n", net_h, net_w);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (nullptr == model_file)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (nullptr == image_file)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = 0;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(nullptr, "tengine", model_file);
if (graph == nullptr)
{
fprintf(stderr, "Create graph failed.\n");
fprintf(stderr, "errno: %d \n", get_tengine_errno());
return -1;
}
/* set the input shape to initial the graph, and prerun graph to infer shape */
int img_size = net_h * net_w * 3;
int dims[] = {1, 3, net_h, net_w}; // nchw
std::vector<float> input_data(img_size);
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == nullptr)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data.data(), img_size * 4) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return -1;
}
/* prepare process input data, set the data mem to input tensor */
get_input_data_darknet(image_file, input_data.data(), net_h, net_w);
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < 1; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
min_time = std::min(min_time, cur);
max_time = std::max(max_time, cur);
}
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", 1, 1,
total_time, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
image img = imread(image_file);
int output_node_num = get_graph_output_node_number(graph);
/* save layer */
std::vector<layer> layers_params;
layers_params.clear();
/* save detection reslult */
std::vector<detection*> detections;
detections.clear();
/* decode layer one by one */
for (int node = 0; node < output_node_num; ++node)
{
tensor_t out_tensor = get_graph_output_tensor(graph, node, 0);
int out_dim[4];
get_tensor_shape(out_tensor, out_dim, 4);
layer l_params;
int out_w = out_dim[3];
int out_h = out_dim[2];
l_params = make_darknet_layer(out_w, out_h, net_w, net_h, numBBoxes, total_numAnchors, classes);
layers_params.push_back(l_params);
float* out_data = ( float* )get_tensor_buffer(out_tensor);
std::vector<detection*> l_dets = forward_darknet_layer_cpu(out_data, l_params, img.w, img.h, net_w, net_h, s_thresh);
if (l_dets.empty())
continue;
detections.insert(detections.end(), l_dets.begin(), l_dets.end());
}
if (detections.empty())
{
fprintf(stderr, "no object detect");
return 0;
}
/* do nms */
do_nms_sort(detections, detections.size(), classes, s_nms);
/* print output dectections */
int i, j;
for (i = 0; i < detections.size(); ++i)
{
int cls = -1;
float best_class_prob = s_thresh;
for (j = 0; j < classes; ++j)
{
if (detections[i]->prob[j] > best_class_prob)
{
if (cls < 0)
{
cls = j;
best_class_prob = detections[i]->prob[j];
}
}
}
if (cls >= 0)
{
box b = detections[i]->bbox;
int left = (b.x - b.w / 2.) * img.w;
int right = (b.x + b.w / 2.) * img.w;
int top = (b.y - b.h / 2.) * img.h;
int bot = (b.y + b.h / 2.) * img.h;
draw_box(img, left, top, right, bot, 2, 125, 0, 125);
fprintf(stderr, "%2d: %3.0f%%, [%4d,%4d,%4d,%4d], %s\n", cls, best_class_prob * 100, left, top, right, bot, class_names[cls]);
}
if (detections[i]->prob)
free(detections[i]->prob);
}
save_image(img, "yolov4_out");
/* free resource */
for (int i = 0; i < output_node_num; ++i)
{
tensor_t out_tensor = get_graph_output_tensor(graph, i, 0);
release_graph_tensor(out_tensor);
}
free_image(img);
for (int i = 0; i < layers_params.size(); i++)
{
layer l = layers_params[i];
if (l.output)
free(l.output);
if (l.anchors)
free(l.anchors);
if (l.anchor_mask)
free(l.anchor_mask);
}
/* release tengine */
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}