forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtm_mobilefacenet.cpp
183 lines (161 loc) · 4.97 KB
/
tm_mobilefacenet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: [email protected]
*/
#include <cstdlib>
#include <cstdio>
#include <vector>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#define DEFAULT_MEAN1 104.007
#define DEFAULT_MEAN2 116.669
#define DEFAULT_MEAN3 122.679
#define MOBILE_FACE_HEIGHT 110
#define MOBILE_FACE_WIDTH 110
graph_t graph;
tensor_t input_tensor;
tensor_t output_tensor;
int feature_len;
void init(const char* modelfile)
{
int dims[4] = {1, 3, MOBILE_FACE_HEIGHT, MOBILE_FACE_WIDTH};
init_tengine();
fprintf(stderr, "tengine version: %s\n", get_tengine_version());
graph = create_graph(NULL, "tengine", modelfile);
if (graph == NULL)
{
fprintf(stderr, "grph nullptr %d\n", get_tengine_errno());
}
else
{
fprintf(stderr, "success init graph\n");
}
input_tensor = get_graph_input_tensor(graph, 0, 0);
set_tensor_shape(input_tensor, dims, 4);
int rc = prerun_graph(graph);
output_tensor = get_graph_output_tensor(graph, 0, 0);
get_tensor_shape(output_tensor, dims, 4);
feature_len = dims[1];
fprintf(stderr, "mobilefacenet prerun %d\n", rc);
}
int getFeature(const char* imagefile, float* feature)
{
int height = MOBILE_FACE_HEIGHT;
int width = MOBILE_FACE_WIDTH;
int img_size = height * width * 3;
int dims[] = {1, 3, height, width};
float means[3] = {DEFAULT_MEAN1, DEFAULT_MEAN2, DEFAULT_MEAN3};
float scales[3] = {1, 1, 1};
std::vector<float> input_data(img_size);
get_input_data(imagefile, input_data.data(), height, width, means, scales);
set_tensor_buffer(input_tensor, input_data.data(), img_size * sizeof(float));
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "run_graph fail");
return -1;
}
float* data = ( float* )get_tensor_buffer(output_tensor);
int outsize;
outsize = get_tensor_buffer_size(output_tensor) / sizeof(float);
for (int i = 0; i < outsize; i++)
feature[i] = data[i];
return outsize;
}
void normlize(float* feature, int size)
{
float norm = 0;
for (int i = 0; i < size; ++i)
{
norm += feature[i] * feature[i];
}
for (int i = 0; i < size; ++i)
{
feature[i] /= sqrt(norm);
}
}
void release()
{
release_graph_tensor(input_tensor);
release_graph_tensor(output_tensor);
destroy_graph(graph);
}
void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-a person_a -b person_b]\n [-t thread_count]\n");
fprintf(stderr, "\nmobilefacenet example: \n ./mobilefacenet -m /path/to/mobilenet.tmfile -a "
"/path/to/person_a.jpg -b /path/to/person_b.jpg\n");
}
int main(int argc, char* argv[])
{
char* model_file = NULL;
char* person_a = NULL;
char* person_b = NULL;
int res;
while ((res = getopt(argc, argv, "m:a:b:h")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'a':
person_a = optarg;
break;
case 'b':
person_b = optarg;
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (model_file == NULL)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(person_a) || !check_file_exist(person_b))
return -1;
init(model_file);
std::vector<float> featurea(feature_len);
std::vector<float> featureb(feature_len);
int outputsizea = getFeature(person_a, featurea.data());
int outputsizeb = getFeature(person_b, featureb.data());
if (outputsizea != feature_len || outputsizeb != feature_len)
{
fprintf(stderr, "getFeature feature out len error");
}
normlize(featurea.data(), feature_len);
normlize(featureb.data(), feature_len);
float sim = 0;
for (int i = 0; i < feature_len; ++i)
{
sim += featurea[i] * featureb[i];
}
fprintf(stderr, "the cosine sim of person_a and person_b is %f\n", sim);
release();
return 0;
}