forked from tenstorrent/tt-kmd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrayskull.c
755 lines (598 loc) · 23.6 KB
/
grayskull.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
// SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.
// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/firmware.h>
#include <linux/timekeeping.h>
#include <asm/io.h>
#include "module.h"
#include "grayskull.h"
#include "ttkmd_arc_if.h"
#include "enumerate.h"
#include "pcie.h"
#define GRID_SIZE_X 13
#define GRID_SIZE_Y 12
#define REG_IOMAP_BAR 0
#define REG_IOMAP_START 0x1FC00000 // Starting at PCI TLB config registers
#define REG_IOMAP_LEN 0x00400000 // Covering entire system register space
// Map the last 16MB TLB for kernel dynamic access.
#define KERNEL_TLB_BAR 0
#define KERNEL_TLB_START (156*(1<<20) + 10*(1<<21) + 19*(1<<24))
#define KERNEL_TLB_LEN (1u << 24)
#define KERNEL_TLB_REGS ((156+10+19)*2*sizeof(u32))
#define PCI_TLB_CONFIG_OFFSET (0x1FC00000 - REG_IOMAP_START)
#define ARC_ICCM_MEMORY_OFFSET (0x1FE00000 - REG_IOMAP_START)
#define ARC_CSM_MEMORY_OFFSET (0x1FE80000 - REG_IOMAP_START)
#define ARC_ROM_MEMORY_OFFSET (0x1FF00000 - REG_IOMAP_START)
#define RESET_UNIT_REG_OFFSET (0x1FF30000 - REG_IOMAP_START)
#define TTKMD_ARC_IF_OFFSET 0x77000
#define ARC_CSM_ROW_HARVESTING_OFFSET 0x7836C
#define SCRATCH_REG(n) (0x60 + (n)*sizeof(u32)) /* byte offset */
#define POST_CODE_REG SCRATCH_REG(0)
#define POST_CODE_MASK ((u32)0x3FFF)
#define POST_CODE_ARC_SLEEP 2
#define POST_CODE_ARC_L2 0xC0DE0000
#define POST_CODE_ARC_L2_MASK 0xFFFF0000
#define SCRATCH_5_ARC_BOOTROM_DONE 0x60
#define SCRATCH_5_ARC_L2_DONE 0x0
#define ARC_MISC_CNTL_REG 0x100
#define ARC_MISC_CNTL_RESET_MASK (1 << 12)
#define ARC_MISC_CNTL_IRQ0_MASK (1 << 16)
#define ARC_UDMIAXI_REGION_REG 0x10C
#define ARC_UDMIAXI_REGION_ICCM(n) (0x3 * (n))
#define ARC_UDMIAXI_REGION_CSM 0x10
#define GPIO_PAD_VAL_REG 0x1B8
#define GPIO_ARC_SPI_BOOTROM_EN_MASK (1 << 12)
// Scratch register 5 is used for the firmware message protocol.
// Write 0xAA00 | message_id into scratch register 5, wait for message_id to appear.
// After reading the message, the firmware will immediately reset SR5 to 0 and write message_id when done.
// Appearance of any other value indicates a conflict with another message.
#define GS_FW_MESSAGE_PRESENT 0xAA00
#define GS_FW_MSG_GO_LONG_IDLE 0x54
#define GS_FW_MSG_SHUTDOWN 0x55
#define GS_FW_MSG_TYPE_PCIE_MUTEX_ACQUIRE 0x9E
#define GS_FW_MSG_ASTATE0 0xA0
#define GS_FW_MSG_ASTATE1 0xA1
#define GS_FW_MSG_ASTATE3 0xA3
#define GS_FW_MSG_ASTATE5 0xA5
#define GS_FW_MSG_CURR_DATE 0xB7
#define GS_ARC_L2_FW_NAME "tenstorrent_gs_arc_l2_fw.bin"
#define GS_ARC_L2_FW_SIZE_BYTES 0xF000
#define GS_ICCM_FW_SIZE_BYTES 0x1000
#define GS_WATCHDOG_FW_NAME "tenstorrent_gs_wdg_fw.bin"
#define GS_WATCHDOG_FW_CORE_ID 3
#define GS_SMBUS_FW_NAME "tenstorrent_gs_smbus_fw.bin"
#define GS_SMBUS_FW_CORE_ID 1
#define DRAM_NOC0_REG_BASE 0xffff4000
#define DRAM_NOC1_REG_BASE 0xffff5000
#define ARC_NOC0_REG_BASE 0x1ff50000
#define ARC_NOC1_REG_BASE 0x1ff58000
#define PCI_NOC0_REG_BASE 0x1fd00000
#define PCI_NOC1_REG_BASE 0x1fd08000
#define TENSIX_NOC0_REG_BASE 0xffb20000
#define TENSIX_NOC1_REG_BASE 0xffb30000
#define NIU_CFG_0 0x100
#define ROUTER_CFG_0 0x104
#define ROUTER_CFG_1 0x108
#define ROUTER_CFG_3 0x110
// NIU_CFG_0
#define NIU_CLOCK_GATING_ENABLE (1u << 0)
#define NIU_TILE_CLOCK_DISABLE (1u << 12)
// ROUTER_CFG_0
#define ROUTER_CLOCK_GATING_ENABLE (1u << 0)
#define ROUTER_MAX_BACKOFF_EXP (0xFu << 8)
struct TLB_16M_REG {
union {
struct {
u32 low32;
u32 high32;
};
struct {
u64 local_offset: 8;
u64 x_end: 6;
u64 y_end: 6;
u64 x_start: 6;
u64 y_start: 6;
u64 noc_sel : 1;
u64 mcast: 1;
u64 ordering: 2;
u64 linked: 1;
};
};
};
#define TLB_16M_SIZE_SHIFT 24
static bool is_hardware_hung(struct pci_dev *pdev, u8 __iomem *reset_unit_regs) {
u16 vendor_id;
if (pdev != NULL
&& (pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id) != PCIBIOS_SUCCESSFUL
|| vendor_id != PCI_VENDOR_ID_TENSTORRENT))
return true;
return (ioread32(reset_unit_regs + SCRATCH_REG(6)) == 0xFFFFFFFF);
}
static int wait_reg32_with_timeout(u8 __iomem* reset_unit_regs, u8 __iomem* reg,
u32 expected_val, u32 timeout_us) {
// Scale poll_period for around 100 polls, and at least 10 us
u32 poll_period_us = max((u32)10, timeout_us / 100);
ktime_t end_time = ktime_add_us(ktime_get(), timeout_us);
while (1) {
u32 read_val = ioread32(reg);
if (read_val == expected_val)
return 0;
if (read_val == 0xFFFFFFFFu && is_hardware_hung(NULL, reset_unit_regs))
return -2;
if (ktime_after(ktime_get(), end_time))
return -1;
usleep_range(poll_period_us, 2 * poll_period_us);
}
}
static int arc_msg_poll_completion(u8 __iomem* reset_unit_regs, u8 __iomem* msg_reg,
u32 msg_code, u32 timeout_us, u16* exit_code) {
// Scale poll_period for around 100 polls, and at least 10 us
u32 poll_period_us = max((u32)10, timeout_us / 100);
ktime_t end_time = ktime_add_us(ktime_get(), timeout_us);
while (true) {
u32 read_val = ioread32(msg_reg);
if ((read_val & 0xffff) == msg_code) {
if (exit_code)
*exit_code = read_val >> 16;
return 0;
}
if (read_val == 0xFFFFFFFFu && is_hardware_hung(NULL, reset_unit_regs)) {
pr_debug("Tenstorrent Device is hung executing message: %08X.", msg_code);
return -3;
}
if (read_val == 0xFFFFFFFFu) {
pr_debug("Tenstorrent FW message unrecognized: %08X.", msg_code);
return -2;
}
if (ktime_after(ktime_get(), end_time)) {
pr_debug("Tenstorrent FW message timeout: %08X.", msg_code);
return -1;
}
usleep_range(poll_period_us, 2 * poll_period_us);
}
}
bool arc_l2_is_running(u8 __iomem* reset_unit_regs) {
u32 post_code = ioread32(reset_unit_regs + POST_CODE_REG);
return ((post_code & POST_CODE_ARC_L2_MASK) == POST_CODE_ARC_L2);
}
bool grayskull_send_arc_fw_message_with_args(u8 __iomem* reset_unit_regs,
u8 message_id, u16 arg0, u16 arg1,
u32 timeout_us, u16* exit_code) {
void __iomem *args_reg = reset_unit_regs + SCRATCH_REG(3);
void __iomem *message_reg = reset_unit_regs + SCRATCH_REG(5);
void __iomem *arc_misc_cntl_reg = reset_unit_regs + ARC_MISC_CNTL_REG;
u32 args = arg0 | ((u32)arg1 << 16);
u32 arc_misc_cntl;
if (!arc_l2_is_running(reset_unit_regs)) {
pr_warn("Skipping message %08X due to FW not running.\n",
(unsigned int)message_id);
return false;
}
iowrite32(args, args_reg);
iowrite32(GS_FW_MESSAGE_PRESENT | message_id, message_reg);
// Trigger IRQ to ARC
arc_misc_cntl = ioread32(arc_misc_cntl_reg);
iowrite32(arc_misc_cntl | ARC_MISC_CNTL_IRQ0_MASK, arc_misc_cntl_reg);
if (arc_msg_poll_completion(reset_unit_regs, message_reg, message_id, timeout_us, exit_code) < 0) {
return false;
} else {
return true;
}
}
bool grayskull_send_arc_fw_message(u8 __iomem* reset_unit_regs, u8 message_id, u32 timeout_us, u16* exit_code) {
return grayskull_send_arc_fw_message_with_args(reset_unit_regs, message_id, 0, 0, timeout_us, exit_code);
}
static int grayskull_load_arc_fw(struct grayskull_device *gs_dev) {
const struct firmware *firmware;
int ret = 0;
u32 reset_vector;
u8 __iomem* reset_unit_regs = gs_dev->reset_unit_regs;
u8 __iomem* fw_target_mem = gs_dev->reg_iomap + ARC_CSM_MEMORY_OFFSET;
u8 __iomem* reset_vec_target_mem = gs_dev->reg_iomap + ARC_ROM_MEMORY_OFFSET;
ret = request_firmware(&firmware, GS_ARC_L2_FW_NAME, &gs_dev->tt.pdev->dev);
if (ret)
goto grayskull_load_arc_fw_cleanup;
if (firmware->size != GS_ARC_L2_FW_SIZE_BYTES) {
ret = -EINVAL;
goto grayskull_load_arc_fw_cleanup;
}
iowrite32(ARC_UDMIAXI_REGION_CSM, reset_unit_regs + ARC_UDMIAXI_REGION_REG);
memcpy_toio(fw_target_mem, firmware->data, GS_ARC_L2_FW_SIZE_BYTES);
reset_vector = le32_to_cpu(*(u32 *)firmware->data);
iowrite32(reset_vector, reset_vec_target_mem);
grayskull_load_arc_fw_cleanup:
release_firmware(firmware);
return ret;
}
static int grayskull_load_iccm_fw(struct grayskull_device *gs_dev,
const char* fw_name,
u32 core_id,
u32 *reset_vector) {
const struct firmware *firmware;
int ret = 0;
u8 __iomem* reset_unit_regs = gs_dev->reset_unit_regs;
u8 __iomem* fw_target_mem = gs_dev->reg_iomap + ARC_ICCM_MEMORY_OFFSET;
ret = request_firmware(&firmware, fw_name, &gs_dev->tt.pdev->dev);
if (ret)
goto grayskull_load_iccm_fw_cleanup;
if (firmware->size != GS_ICCM_FW_SIZE_BYTES) {
ret = -EINVAL;
goto grayskull_load_iccm_fw_cleanup;
}
iowrite32(ARC_UDMIAXI_REGION_ICCM(core_id),
reset_unit_regs + ARC_UDMIAXI_REGION_REG);
memcpy_toio(fw_target_mem, firmware->data, GS_ICCM_FW_SIZE_BYTES);
// Reset vector needs to be passed to FW through ttkmd_arc_if
*reset_vector = le32_to_cpu(*(u32 *)firmware->data);
iowrite32(ARC_UDMIAXI_REGION_CSM, reset_unit_regs + ARC_UDMIAXI_REGION_REG);
grayskull_load_iccm_fw_cleanup:
release_firmware(firmware);
return ret;
}
static int grayskull_populate_arc_if(struct grayskull_device *gs_dev) {
ttkmd_arc_if_u *ttkmd_arc_if = kzalloc(sizeof(ttkmd_arc_if_u), GFP_KERNEL);
u8 __iomem* reset_unit_regs = gs_dev->reset_unit_regs;
u8 __iomem* device_ttkmd_arc_if = gs_dev->reg_iomap + ARC_CSM_MEMORY_OFFSET + TTKMD_ARC_IF_OFFSET;
if (ttkmd_arc_if == NULL)
return -ENOMEM;
// ARC is little-endian. Convert to little-endian so we can use memcpy_toio
ttkmd_arc_if->f.magic_number[0] = cpu_to_le32(TTKMD_ARC_MAGIC_NUMBER_0);
ttkmd_arc_if->f.magic_number[1] = cpu_to_le32(TTKMD_ARC_MAGIC_NUMBER_1);
ttkmd_arc_if->f.version = cpu_to_le32(TTKMD_ARC_IF_VERSION);
ttkmd_arc_if->f.stage2_init = arc_fw_stage2_init;
ttkmd_arc_if->f.ddr_train_en = ddr_train_en;
ttkmd_arc_if->f.ddr_test_mode = ddr_test_mode;
ttkmd_arc_if->f.ddr_freq_ovr = cpu_to_le32(ddr_frequency_override);
ttkmd_arc_if->f.aiclk_ppm_en = aiclk_ppm_en;
ttkmd_arc_if->f.aiclk_ppm_ovr = cpu_to_le32(aiclk_fmax_override);
ttkmd_arc_if->f.feature_disable_ovr = cpu_to_le32(arc_fw_feat_dis_override);
ttkmd_arc_if->f.watchdog_fw_en = watchdog_fw_en;
ttkmd_arc_if->f.watchdog_fw_load = !watchdog_fw_override;
ttkmd_arc_if->f.watchdog_fw_reset_vec =
cpu_to_le32(gs_dev->watchdog_fw_reset_vec);
ttkmd_arc_if->f.smbus_fw_en = smbus_fw_en;
ttkmd_arc_if->f.smbus_fw_load = !smbus_fw_override;
ttkmd_arc_if->f.smbus_fw_reset_vec =
cpu_to_le32(gs_dev->smbus_fw_reset_vec);
iowrite32(ARC_UDMIAXI_REGION_CSM, reset_unit_regs + ARC_UDMIAXI_REGION_REG);
memcpy_toio(device_ttkmd_arc_if, ttkmd_arc_if, sizeof(ttkmd_arc_if_u));
kfree(ttkmd_arc_if);
return 0;
}
static int toggle_arc_reset(u8 __iomem* reset_unit_regs) {
u32 arc_misc_cntl;
arc_misc_cntl = ioread32(reset_unit_regs + ARC_MISC_CNTL_REG);
iowrite32(arc_misc_cntl | ARC_MISC_CNTL_RESET_MASK,
reset_unit_regs + ARC_MISC_CNTL_REG);
udelay(1);
iowrite32(arc_misc_cntl & ~ARC_MISC_CNTL_RESET_MASK,
reset_unit_regs + ARC_MISC_CNTL_REG);
return 0;
}
static int grayskull_arc_init(struct grayskull_device *gs_dev) {
void __iomem *reset_unit_regs = gs_dev->reset_unit_regs;
u32 gpio_val;
int ret;
gpio_val = ioread32(reset_unit_regs + GPIO_PAD_VAL_REG);
if ((gpio_val & GPIO_ARC_SPI_BOOTROM_EN_MASK) == GPIO_ARC_SPI_BOOTROM_EN_MASK) {
ret = wait_reg32_with_timeout(reset_unit_regs, reset_unit_regs + SCRATCH_REG(5),
SCRATCH_5_ARC_BOOTROM_DONE, 1000);
if (ret) {
pr_warn("Timeout waiting for SPI bootrom init done.\n");
goto grayskull_arc_init_err;
}
} else {
pr_warn("SPI bootrom not enabled.\n");
goto grayskull_arc_init_err;
}
if (arc_fw_override) {
if (grayskull_load_arc_fw(gs_dev)) {
pr_warn("ARC FW Override unsuccessful.\n");
goto grayskull_arc_init_err;
}
}
if (watchdog_fw_override) {
if (grayskull_load_iccm_fw(gs_dev,
GS_WATCHDOG_FW_NAME,
GS_WATCHDOG_FW_CORE_ID,
&gs_dev->watchdog_fw_reset_vec)) {
pr_warn("Watchdog FW Override unsuccessful.\n");
goto grayskull_arc_init_err;
}
}
if (smbus_fw_override) {
if (grayskull_load_iccm_fw(gs_dev,
GS_SMBUS_FW_NAME,
GS_SMBUS_FW_CORE_ID,
&gs_dev->smbus_fw_reset_vec)) {
pr_warn("Watchdog FW Override unsuccessful.\n");
goto grayskull_arc_init_err;
}
}
if (grayskull_populate_arc_if(gs_dev)) {
pr_warn("Driver to ARC table init failed.\n");
goto grayskull_arc_init_err;
}
if (toggle_arc_reset(reset_unit_regs))
goto grayskull_arc_init_err;
if (wait_reg32_with_timeout(reset_unit_regs, reset_unit_regs + SCRATCH_REG(5),
SCRATCH_5_ARC_L2_DONE, 5000000)) {
pr_warn("Timeout waiting for ARC FW initialization to complete.");
goto grayskull_arc_init_err;
}
pr_info("ARC initialization done.\n");
return 0;
grayskull_arc_init_err:
pr_warn("ARC initialization failed.\n");
return -1;
}
// Compute gs_dev->enabled_rows which has 1 bit set for each enabled row.
// Indexed by NOC0 Y coordinate. 0 and 6 are "disabled", the router setup
// code depends on this.
static void grayskull_harvesting_init(struct grayskull_device *gs_dev) {
static const u8 fuse_row_to_noc0[] = { 5, 7, 4, 8, 3, 9, 2, 10, 1, 11 };
u32 harvesting_fuses;
u32 bad_mem_bits, bad_logic_bits, bad_row_bits;
int i;
harvesting_fuses = tensix_harvest_override;
if (harvesting_fuses == 0xFFFFFFFF)
harvesting_fuses = ioread32(gs_dev->reg_iomap + ARC_CSM_MEMORY_OFFSET + ARC_CSM_ROW_HARVESTING_OFFSET);
if (harvesting_fuses == 0xFFFFFFFF)
harvesting_fuses = 0;
// harvesting_fuses contains 10 bits for bad rows due to memory failures
// followed by 10 bits for bad rows due to logic failures.
// These are physically-mapped in "bottom-up" order.
bad_mem_bits = harvesting_fuses & 0x3FF;
bad_logic_bits = (harvesting_fuses >> 10) & 0x3FF;
bad_row_bits = bad_mem_bits | bad_logic_bits;
gs_dev->enabled_rows = 0;
for (i = 0; i < 10; i++) {
if (!(bad_row_bits & (1 << i)))
gs_dev->enabled_rows |= 1 << fuse_row_to_noc0[i];
}
// pr_info("harvesting enabled_rows = %08x\n", gs_dev->enabled_rows);
}
static u32 program_tlb(struct grayskull_device *gs_dev, unsigned int x, unsigned int y, unsigned int noc, u32 addr) {
struct TLB_16M_REG tlb;
tlb.low32 = 0;
tlb.high32 = 0;
tlb.local_offset = addr >> TLB_16M_SIZE_SHIFT;
tlb.x_end = x;
tlb.y_end = y;
tlb.noc_sel = noc;
// pr_info("TLB %08x %d-%d/%d @ %08x = %08x:%08x\n", tlb.local_offset, tlb.x_end, tlb.y_end, tlb.noc_sel, addr,
// tlb.high32, tlb.low32);
iowrite32(tlb.low32, gs_dev->reg_iomap + PCI_TLB_CONFIG_OFFSET + KERNEL_TLB_REGS);
iowrite32(tlb.high32, gs_dev->reg_iomap + PCI_TLB_CONFIG_OFFSET + KERNEL_TLB_REGS + sizeof(u32));
return addr % (1u << TLB_16M_SIZE_SHIFT);
}
// setup_noc_common handles two cases:
// 1. NOC registers are mapped at a fixed offset within BAR0
// 2. NOC registers are mapped through a TLB
// We don't have a single mapping that covers both the fixed mappings and the TLB windows so we must accept a pointer.
static void setup_noc_common(u8 __iomem *noc_reg_base, const u32 *router_cfg) {
u32 reg;
iowrite32(router_cfg[0], noc_reg_base + ROUTER_CFG_1);
iowrite32(router_cfg[1], noc_reg_base + ROUTER_CFG_3);
reg = ioread32(noc_reg_base + NIU_CFG_0);
reg |= NIU_CLOCK_GATING_ENABLE;
iowrite32(reg, noc_reg_base + NIU_CFG_0);
reg = ioread32(noc_reg_base + ROUTER_CFG_0);
reg |= ROUTER_CLOCK_GATING_ENABLE;
reg |= ROUTER_MAX_BACKOFF_EXP;
iowrite32(reg, noc_reg_base + ROUTER_CFG_0);
}
// noc0,1_reg_base are the BAR0-relative addresses of the NOC registers
static void setup_noc_by_address(struct grayskull_device *gs_dev, u32 noc0_reg_base, u32 noc1_reg_base, const u32 *router_cfg) {
setup_noc_common(gs_dev->reg_iomap + noc0_reg_base - REG_IOMAP_START, router_cfg);
setup_noc_common(gs_dev->reg_iomap + noc1_reg_base - REG_IOMAP_START, router_cfg+2);
}
// x,y are NOC0 coordinates. noc0,1_reg_base are the local addresses of the NOC registers
// router_cfg is { NOC0 ROUTER_CFG_1, NOC0 ROUTER_CFG_3, NOC1 ROUTER_CFG_1, NOC1 ROUTER_CFG_3 }
static void setup_noc_by_xy(struct grayskull_device *gs_dev,
unsigned int x, unsigned int y,
u32 noc0_reg_base, u32 noc1_reg_base,
const u32 *router_cfg) {
unsigned int noc1_x = GRID_SIZE_X - x - 1;
unsigned int noc1_y = GRID_SIZE_Y - y - 1;
u32 tlb_offset;
tlb_offset = program_tlb(gs_dev, x, y, 0, noc0_reg_base);
setup_noc_common(gs_dev->kernel_tlb + tlb_offset, router_cfg);
tlb_offset = program_tlb(gs_dev, noc1_x, noc1_y, 1, noc1_reg_base);
setup_noc_common(gs_dev->kernel_tlb + tlb_offset, router_cfg+2);
}
// Set NIU_CFG_0 tile clock disable based on core harvesting.
static void set_tile_clock_disable(struct grayskull_device *gs_dev, unsigned int x, unsigned int y) {
unsigned int noc1_x = GRID_SIZE_X - x - 1;
unsigned int noc1_y = GRID_SIZE_Y - y - 1;
bool enabled = ((gs_dev->enabled_rows & (1 << y)) != 0);
u32 reg, tlb_offset;
tlb_offset = program_tlb(gs_dev, x, y, 0, TENSIX_NOC0_REG_BASE);
reg = ioread32(gs_dev->kernel_tlb + tlb_offset + NIU_CFG_0);
if (enabled)
reg &= ~NIU_TILE_CLOCK_DISABLE;
else
reg |= NIU_TILE_CLOCK_DISABLE;
iowrite32(reg, gs_dev->kernel_tlb + tlb_offset + NIU_CFG_0);
tlb_offset = program_tlb(gs_dev, noc1_x, noc1_y, 1, TENSIX_NOC1_REG_BASE);
reg = ioread32(gs_dev->kernel_tlb + tlb_offset + NIU_CFG_0);
if (enabled)
reg &= ~NIU_TILE_CLOCK_DISABLE;
else
reg |= NIU_TILE_CLOCK_DISABLE;
iowrite32(reg, gs_dev->kernel_tlb + tlb_offset + NIU_CFG_0);
}
#define TENSIX_NODE_TYPE 0
#define DRAM_NODE_TYPE 1
#define ARC_NODE_TYPE 2
#define PCI_NODE_TYPE 3
#define EXTRA_ROUTER_NODE_TYPE 4
#define D DRAM_NODE_TYPE
#define A ARC_NODE_TYPE
#define P PCI_NODE_TYPE
#define E EXTRA_ROUTER_NODE_TYPE
#define T TENSIX_NODE_TYPE
// This is indexed by NOC0 coordinates.
static const u8 node_types[GRID_SIZE_Y][GRID_SIZE_X] = {
{ E, D, E, E, D, E, E, D, E, E, D, E, E, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ A, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ P, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, D, E, E, D, E, E, D, E, E, D, E, E, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
{ E, T, T, T, T, T, T, T, T, T, T, T, T, },
};
#undef D
#undef A
#undef P
#undef E
#undef T
static void grayskull_noc_init(struct grayskull_device *gs_dev) {
u32 router_cfg[4]; // NOC0 ROUTER_CFG_1, NOC0, ROUTER_CFG_3, NOC1 ROUTER_CFG_1, NOC1 ROUTER_CFG_3
unsigned x, y;
// NOC0 & NOC1 column broadcast disable bits (column 0 aka 12)
router_cfg[0] = 1 << 0;
router_cfg[2] = 1 << 12;
// NOC0 & NOC1 row broadcast disable bits (rows 0, 6 and any disabled by harvesting)
router_cfg[1] = ~gs_dev->enabled_rows & ((1 << GRID_SIZE_Y) - 1);
router_cfg[3] = 0;
for (y = 0; y < GRID_SIZE_Y; y++) {
router_cfg[3] |= ((router_cfg[1] >> y) & 1) << (GRID_SIZE_Y - y - 1);
}
// pr_info("router_cfg %08x %08x %08x %08x\n", router_cfg[0], router_cfg[1], router_cfg[2], router_cfg[3]);
for (y = 0; y < GRID_SIZE_Y; y++) {
for (x = 0; x < GRID_SIZE_X; x++) {
switch (node_types[y][x]) {
case DRAM_NODE_TYPE:
setup_noc_by_xy(gs_dev, x, y, DRAM_NOC0_REG_BASE, DRAM_NOC1_REG_BASE, router_cfg);
break;
case ARC_NODE_TYPE:
setup_noc_by_address(gs_dev, ARC_NOC0_REG_BASE, ARC_NOC1_REG_BASE, router_cfg);
break;
case PCI_NODE_TYPE:
setup_noc_by_address(gs_dev, PCI_NOC0_REG_BASE, PCI_NOC1_REG_BASE, router_cfg);
break;
case EXTRA_ROUTER_NODE_TYPE:
setup_noc_by_xy(gs_dev, x, y, TENSIX_NOC0_REG_BASE, TENSIX_NOC1_REG_BASE, router_cfg);
break;
case TENSIX_NODE_TYPE:
setup_noc_by_xy(gs_dev, x, y, TENSIX_NOC0_REG_BASE, TENSIX_NOC1_REG_BASE, router_cfg);
set_tile_clock_disable(gs_dev, x, y);
break;
}
}
}
}
// This is shared with wormhole.
bool grayskull_shutdown_firmware(struct pci_dev *pdev, u8 __iomem* reset_unit_regs) {
if (is_hardware_hung(pdev, reset_unit_regs))
return false;
if (!grayskull_send_arc_fw_message(reset_unit_regs, GS_FW_MSG_ASTATE3, 10000, NULL))
return false;
return true;
}
static void month_lookup(u32 days_into_year, u32* day, u32* month) {
static const u8 days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
u32 i;
u32 d_tmp = days_into_year;
for (i = 0; i < ARRAY_SIZE(days_in_month); i++) {
if (d_tmp < days_in_month[i])
break;
d_tmp -= days_in_month[i];
}
*day = d_tmp;
*month = i;
}
void grayskull_send_curr_date(u8 __iomem* reset_unit_regs) {
const u32 SECONDS_TO_2020 = 1577836800; // date -d "Jan 1, 2020 UTC" +%s
const u32 DAYS_PER_FOUR_YEARS = 4*365 + 1;
const u32 DAYS_TO_FEB_29 = 31 + 28;
const u32 SECONDS_PER_DAY = 86400;
u32 day, month;
u32 days_into_year;
u32 Y, M, DD, HH, MM, packed_datetime_low, packed_datetime_high;
u32 seconds_since_2020 = ktime_get_real_seconds() - SECONDS_TO_2020;
u32 seconds_into_day = seconds_since_2020 % SECONDS_PER_DAY;
u32 days_since_2020 = seconds_since_2020 / SECONDS_PER_DAY;
u32 four_years = days_since_2020 / DAYS_PER_FOUR_YEARS;
u32 days_into_four_years = days_since_2020 % DAYS_PER_FOUR_YEARS;
bool leap_day = (days_into_four_years == DAYS_TO_FEB_29);
days_into_four_years -= (days_into_four_years >= DAYS_TO_FEB_29);
days_into_year = days_into_four_years % 365;
month_lookup(days_into_year, &day, &month);
day += leap_day;
Y = 4 * four_years + days_into_four_years / 365;
M = month + 1;
DD = day + 1;
HH = seconds_into_day / 3600;
MM = seconds_into_day / 60 % 60;
packed_datetime_low = (HH << 8) | MM;
packed_datetime_high = (Y << 12) | (M << 8) | DD;
grayskull_send_arc_fw_message_with_args(reset_unit_regs, GS_FW_MSG_CURR_DATE,
packed_datetime_low, packed_datetime_high, 1000, NULL);
}
static bool grayskull_init(struct tenstorrent_device *tt_dev) {
struct grayskull_device *gs_dev = tt_dev_to_gs_dev(tt_dev);
gs_dev->reg_iomap = pci_iomap_range(gs_dev->tt.pdev, 0, REG_IOMAP_START, REG_IOMAP_LEN);
gs_dev->kernel_tlb = pci_iomap_range(gs_dev->tt.pdev, KERNEL_TLB_BAR, KERNEL_TLB_START, KERNEL_TLB_LEN);
if (gs_dev->reg_iomap == NULL || gs_dev->kernel_tlb == NULL) {
if (gs_dev->reg_iomap != NULL)
pci_iounmap(gs_dev->tt.pdev, gs_dev->reg_iomap);
if (gs_dev->kernel_tlb != NULL)
pci_iounmap(gs_dev->tt.pdev, gs_dev->kernel_tlb);
return false;
}
gs_dev->reset_unit_regs = gs_dev->reg_iomap + RESET_UNIT_REG_OFFSET;
return true;
}
static bool grayskull_init_hardware(struct tenstorrent_device *tt_dev) {
struct grayskull_device *gs_dev = tt_dev_to_gs_dev(tt_dev);
if (arc_l2_is_running(gs_dev->reset_unit_regs)) {
grayskull_send_arc_fw_message(gs_dev->reset_unit_regs, GS_FW_MSG_ASTATE0, 10000, NULL);
} else if (!arc_fw_init) {
pr_info("ARC initialization skipped.\n");
return true;
} else if (grayskull_arc_init(gs_dev) != 0) {
return false;
}
grayskull_send_curr_date(gs_dev->reset_unit_regs);
complete_pcie_init(&gs_dev->tt, gs_dev->reset_unit_regs);
grayskull_harvesting_init(gs_dev);
grayskull_noc_init(gs_dev);
return true;
}
static void grayskull_cleanup(struct tenstorrent_device *tt_dev) {
struct grayskull_device *gs_dev = tt_dev_to_gs_dev(tt_dev);
if (gs_dev->reset_unit_regs != NULL)
grayskull_shutdown_firmware(tt_dev->pdev, gs_dev->reset_unit_regs);
if (gs_dev->reg_iomap != NULL)
pci_iounmap(gs_dev->tt.pdev, gs_dev->reg_iomap);
if (gs_dev->kernel_tlb != NULL)
pci_iounmap(gs_dev->tt.pdev, gs_dev->kernel_tlb);
}
static void grayskull_last_release_handler(struct tenstorrent_device *tt_dev) {
struct grayskull_device *gs_dev = tt_dev_to_gs_dev(tt_dev);
grayskull_send_arc_fw_message(gs_dev->reset_unit_regs,
GS_FW_MSG_GO_LONG_IDLE,
10000, NULL);
// arg0 = 0 => release the PCIE mutex.
grayskull_send_arc_fw_message_with_args(gs_dev->reset_unit_regs,
GS_FW_MSG_TYPE_PCIE_MUTEX_ACQUIRE,
0, 0, 10000, NULL);
}
struct tenstorrent_device_class grayskull_class = {
.name = "Grayskull",
.instance_size = sizeof(struct grayskull_device),
.init_device = grayskull_init,
.init_hardware = grayskull_init_hardware,
.cleanup_device = grayskull_cleanup,
.last_release_cb = grayskull_last_release_handler,
};