forked from anishmadan23/adversarial-attacks-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
88 lines (63 loc) · 2.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# coding: utf-8
# In[2]:
import requests
from io import BytesIO
import urllib.request as url_req
from PIL import Image
import os
import torch
import torch.nn.functional as F
# In[3]:
def urltoImg(url):
print(url)
try:
img = Image.open(url_req.urlopen(url))
except Exception as error:
print("Couldn't load image "+str(error))
return img
# In[1]:
def tanh_rescale(x, x_min=-1., x_max=1.):
return (torch.tanh(x) + 1) * 0.5 * (x_max - x_min) + x_min
def reduce_sum(x, keepdim=True):
# silly PyTorch, when will you get proper reducing sums/means?
for a in reversed(range(1, x.dim())):
x = x.sum(a, keepdim=keepdim)
return x
def l2_dist(x, y, keepdim=True):
d = (x - y)**2
return reduce_sum(d, keepdim=keepdim)
def torch_arctanh(x, eps=1e-6):
x = x*(1. - eps)
return (torch.log((1 + x) / (1 - x))) * 0.5
def save_imgs(key,url_list):
for i,url in enumerate(url_list):
img = urltoImg(url)
save_path = os.path.join('imagenet_imgs',str(key)+str('_')+str(i)+str('.png'))
img.save(save_path)
def predict_top_five(model,img,k=5):
output = model(img)
# print(output.size())
op_probs = F.softmax(output,dim=1)
top_k = torch.topk(output,k,dim=1)
labels = top_k[1].squeeze_(0)
labels_np = labels.cpu().numpy()
# print(labels)
op_probs_np = op_probs.squeeze_(0).detach().cpu().numpy()*100
# print('Probs')
# print(op_probs_np[labels_np])
return op_probs_np[labels_np],labels_np
def getPredictionInfo(model,img):
output = model(torch.tensor(img))
_,pred = torch.max(output.data,1)
# print(adv_img.data-img.data)
op_probs = F.softmax(output, dim=1) #get probability distribution over classes
pred_prob = ((torch.max(op_probs.data, 1)[0][0]) * 100, 4) #find probability (confidence) of a predicted class
return output,pred,op_probs,pred_prob
def checkMatchingLabels(label,pred_label,misclassfns):
if (int(label)!=int(pred_label)):
misclassfns+=1
return misclassfns
def checkMatchingLabelsTop_five(label,pred_label_list,misclassfns):
if(int(label) not in pred_label_list.astype(int)):
misclassfns+=1
return misclassfns