-
Notifications
You must be signed in to change notification settings - Fork 152
/
update_module_state.py
195 lines (163 loc) · 6.62 KB
/
update_module_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) 2020, Zhiqiang Wang. All Rights Reserved.
from functools import reduce
from typing import Dict, Optional
from torch import nn
from yolort.models import yolo
from yolort.v5 import load_yolov5_model, get_yolov5_size
ARCHITECTURE_MAPS = {
"yolov5s_pan_v4.0": "yolov5_darknet_pan_s_r40",
"yolov5m_pan_v4.0": "yolov5_darknet_pan_m_r40",
"yolov5l_pan_v4.0": "yolov5_darknet_pan_l_r40",
"yolov5s_tan_v4.0": "yolov5_darknet_tan_s_r40",
}
def update_module_state_from_ultralytics(
checkpoint_path: str,
arch: str = "yolov5s",
feature_fusion_type: str = "PAN",
num_classes: int = 80,
set_fp16: bool = True,
verbose: bool = False,
**kwargs,
):
"""
Allows the user to specify a file to use when loading an ultralytics model for conversion.
This is valuable for users who have already trained their models using ultralytics and don't
wish to re-train.
Args:
checkpoint_path (str): Path to your custom model.
arch (str): yolo architecture. Possible values are 'yolov5s', 'yolov5m' and 'yolov5l'.
Default: 'yolov5s'.
feature_fusion_type (str): the type of fature fusion. Possible values are PAN and TAN.
Default: 'PAN'.
num_classes (int): number of detection classes (doesn't including background).
Default: 80.
set_fp16 (bool): allow selective conversion to fp16 or not.
Default: True.
verbose (bool): print all information to screen. Default: True.
"""
model = load_yolov5_model(checkpoint_path, autoshape=False, verbose=verbose)
key_arch = f"{arch}_{feature_fusion_type.lower()}_v4.0"
if key_arch not in ARCHITECTURE_MAPS:
raise NotImplementedError(
"Currently does't support this architecture, "
"fell free to file an issue labeled enhancement to us"
)
module_state_updater = ModuleStateUpdate(
arch=ARCHITECTURE_MAPS[key_arch],
num_classes=num_classes,
**kwargs,
)
module_state_updater.updating(model)
if set_fp16:
module_state_updater.model.half()
return module_state_updater.model
class ModuleStateUpdate:
"""
Update checkpoint from ultralytics yolov5.
"""
def __init__(
self,
arch: Optional[str] = "yolov5_darknet_pan_s_r31",
depth_multiple: Optional[float] = None,
width_multiple: Optional[float] = None,
version: str = "r6.0",
num_classes: int = 80,
inner_block_maps: Optional[Dict[str, str]] = None,
layer_block_maps: Optional[Dict[str, str]] = None,
head_ind: int = 24,
head_name: str = "m",
) -> None:
# Configuration for making the keys consistent
if inner_block_maps is None:
inner_block_maps = {
"0": "9",
"1": "10",
"3": "13",
"4": "14",
}
self.inner_block_maps = inner_block_maps
if layer_block_maps is None:
layer_block_maps = {
"0": "17",
"1": "18",
"2": "20",
"3": "21",
"4": "23",
}
self.layer_block_maps = layer_block_maps
self.head_ind = head_ind
self.head_name = head_name
# Set model
if arch is not None:
model = yolo.__dict__[arch](num_classes=num_classes)
elif depth_multiple is not None and width_multiple is not None:
yolov5_size = get_yolov5_size(depth_multiple, width_multiple)
backbone_name = f"darknet_{yolov5_size}_{version.replace('.', '_')}"
weights_name = (
f"yolov5_darknet_pan_{yolov5_size}_{version.replace('.', '')}_coco"
)
model = yolo.build_model(
backbone_name,
depth_multiple,
width_multiple,
version,
weights_name,
num_classes=num_classes,
)
else:
raise NotImplementedError("Currently either arch or multiples must be set.")
self.model = model
def updating(self, state_dict):
# Obtain module state
state_dict = obtain_module_sequential(state_dict)
# Update backbone features
for name, params in self.model.backbone.body.named_parameters():
params.data.copy_(self.attach_parameters_block(state_dict, name, None))
for name, buffers in self.model.backbone.body.named_buffers():
buffers.copy_(self.attach_parameters_block(state_dict, name, None))
# Update PAN features
for name, params in self.model.backbone.pan.inner_blocks.named_parameters():
params.data.copy_(
self.attach_parameters_block(state_dict, name, self.inner_block_maps)
)
for name, buffers in self.model.backbone.pan.inner_blocks.named_buffers():
buffers.copy_(
self.attach_parameters_block(state_dict, name, self.inner_block_maps)
)
for name, params in self.model.backbone.pan.layer_blocks.named_parameters():
params.data.copy_(
self.attach_parameters_block(state_dict, name, self.layer_block_maps)
)
for name, buffers in self.model.backbone.pan.layer_blocks.named_buffers():
buffers.copy_(
self.attach_parameters_block(state_dict, name, self.layer_block_maps)
)
# Update box heads
for name, params in self.model.head.named_parameters():
params.data.copy_(self.attach_parameters_heads(state_dict, name))
for name, buffers in self.model.head.named_buffers():
buffers.copy_(self.attach_parameters_heads(state_dict, name))
@staticmethod
def attach_parameters_block(state_dict, name, block_maps=None):
keys = name.split(".")
ind = int(block_maps[keys[0]]) if block_maps else int(keys[0])
return rgetattr(state_dict[ind], keys[1:])
def attach_parameters_heads(self, state_dict, name):
keys = name.split(".")
ind = int(keys[1])
return rgetattr(
getattr(state_dict[self.head_ind], self.head_name)[ind], keys[2:]
)
def rgetattr(obj, attr, *args):
"""
Nested version of getattr.
Ref: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects
"""
def _getattr(obj, attr):
return getattr(obj, attr, *args)
return reduce(_getattr, [obj] + attr)
def obtain_module_sequential(state_dict):
if isinstance(state_dict, nn.Sequential):
return state_dict
else:
return obtain_module_sequential(state_dict.model)