-
Notifications
You must be signed in to change notification settings - Fork 152
/
update_module_state.py
238 lines (202 loc) · 7.43 KB
/
update_module_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) 2020, Zhiqiang Wang. All Rights Reserved.
from functools import reduce
from typing import Dict, Optional
from torch import nn
from yolort.models import yolo
from yolort.v5 import load_yolov5_model, get_yolov5_size
def load_from_ultralytics(checkpoint_path: str, version: str = "r6.0"):
"""
Allows the user to load model state file from the checkpoint trained from
the ultralytics/yolov5.
Args:
checkpoint_path (str): Path of the YOLOv5 checkpoint model.
version (str): upstream version released by the ultralytics/yolov5, Possible
values are ["r3.1", "r4.0", "r6.0"]. Default: "r6.0".
"""
assert version in [
"r3.1",
"r4.0",
"r6.0",
], "Currently does not support this version."
checkpoint_yolov5 = load_yolov5_model(checkpoint_path)
num_classes = checkpoint_yolov5.yaml["nc"]
strides = checkpoint_yolov5.stride
anchor_grids = checkpoint_yolov5.yaml["anchors"]
depth_multiple = checkpoint_yolov5.yaml["depth_multiple"]
width_multiple = checkpoint_yolov5.yaml["width_multiple"]
use_p6 = False
if len(strides) == 4:
use_p6 = True
if use_p6:
inner_block_maps = {
"0": "11",
"1": "12",
"3": "15",
"4": "16",
"6": "19",
"7": "20",
}
layer_block_maps = {
"0": "23",
"1": "24",
"2": "26",
"3": "27",
"4": "29",
"5": "30",
"6": "32",
}
p6_block_maps = {"0": "9", "1": "10"}
head_ind = 33
head_name = "m"
else:
inner_block_maps = {"0": "9", "1": "10", "3": "13", "4": "14"}
layer_block_maps = {"0": "17", "1": "18", "2": "20", "3": "21", "4": "23"}
p6_block_maps = None
head_ind = 24
head_name = "m"
module_state_updater = ModuleStateUpdate(
depth_multiple,
width_multiple,
inner_block_maps=inner_block_maps,
layer_block_maps=layer_block_maps,
p6_block_maps=p6_block_maps,
head_ind=head_ind,
head_name=head_name,
num_classes=num_classes,
version=version,
use_p6=use_p6,
)
module_state_updater.updating(checkpoint_yolov5)
state_dict = module_state_updater.model.state_dict()
size = get_yolov5_size(depth_multiple, width_multiple)
return {
"num_classes": num_classes,
"depth_multiple": depth_multiple,
"width_multiple": width_multiple,
"strides": strides,
"anchor_grids": anchor_grids,
"use_p6": use_p6,
"size": size,
"state_dict": state_dict,
}
class ModuleStateUpdate:
"""
Update checkpoint from ultralytics yolov5.
"""
def __init__(
self,
depth_multiple: float,
width_multiple: float,
inner_block_maps: Optional[Dict[str, str]] = None,
layer_block_maps: Optional[Dict[str, str]] = None,
p6_block_maps: Optional[Dict[str, str]] = None,
head_ind: int = 24,
head_name: str = "m",
num_classes: int = 80,
version: str = "r6.0",
use_p6: bool = False,
) -> None:
# Configuration for making the keys consistent
if inner_block_maps is None:
inner_block_maps = {
"0": "9",
"1": "10",
"3": "13",
"4": "14",
}
self.inner_block_maps = inner_block_maps
if layer_block_maps is None:
layer_block_maps = {
"0": "17",
"1": "18",
"2": "20",
"3": "21",
"4": "23",
}
self.layer_block_maps = layer_block_maps
self.p6_block_maps = p6_block_maps
self.head_ind = head_ind
self.head_name = head_name
# Set model
yolov5_size = get_yolov5_size(depth_multiple, width_multiple)
backbone_name = f"darknet_{yolov5_size}_{version.replace('.', '_')}"
self.model = yolo.build_model(
backbone_name,
depth_multiple,
width_multiple,
version,
num_classes=num_classes,
use_p6=use_p6,
)
def updating(self, state_dict):
# Obtain module state
state_dict = obtain_module_sequential(state_dict)
# Update backbone weights
for name, params in self.model.backbone.body.named_parameters():
params.data.copy_(self.attach_parameters_block(state_dict, name, None))
for name, buffers in self.model.backbone.body.named_buffers():
buffers.copy_(self.attach_parameters_block(state_dict, name, None))
# PAN
# Update P6 weights
if self.p6_block_maps is not None:
for (
name,
params,
) in self.model.backbone.pan.intermediate_blocks.p6.named_parameters():
params.data.copy_(
self.attach_parameters_block(state_dict, name, self.p6_block_maps)
)
for (
name,
buffers,
) in self.model.backbone.pan.intermediate_blocks.p6.named_buffers():
buffers.copy_(
self.attach_parameters_block(state_dict, name, self.p6_block_maps)
)
# Update inner_block weights
for name, params in self.model.backbone.pan.inner_blocks.named_parameters():
params.data.copy_(
self.attach_parameters_block(state_dict, name, self.inner_block_maps)
)
for name, buffers in self.model.backbone.pan.inner_blocks.named_buffers():
buffers.copy_(
self.attach_parameters_block(state_dict, name, self.inner_block_maps)
)
# Update layer_block weights
for name, params in self.model.backbone.pan.layer_blocks.named_parameters():
params.data.copy_(
self.attach_parameters_block(state_dict, name, self.layer_block_maps)
)
for name, buffers in self.model.backbone.pan.layer_blocks.named_buffers():
buffers.copy_(
self.attach_parameters_block(state_dict, name, self.layer_block_maps)
)
# Update YOLOHead weights
for name, params in self.model.head.named_parameters():
params.data.copy_(self.attach_parameters_heads(state_dict, name))
for name, buffers in self.model.head.named_buffers():
buffers.copy_(self.attach_parameters_heads(state_dict, name))
@staticmethod
def attach_parameters_block(state_dict, name, block_maps=None):
keys = name.split(".")
ind = int(block_maps[keys[0]]) if block_maps else int(keys[0])
return rgetattr(state_dict[ind], keys[1:])
def attach_parameters_heads(self, state_dict, name):
keys = name.split(".")
ind = int(keys[1])
return rgetattr(
getattr(state_dict[self.head_ind], self.head_name)[ind], keys[2:]
)
def rgetattr(obj, attr, *args):
"""
Nested version of getattr.
Ref: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects
"""
def _getattr(obj, attr):
return getattr(obj, attr, *args)
return reduce(_getattr, [obj] + attr)
def obtain_module_sequential(state_dict):
if isinstance(state_dict, nn.Sequential):
return state_dict
else:
return obtain_module_sequential(state_dict.model)