-
Notifications
You must be signed in to change notification settings - Fork 152
/
box_head.py
365 lines (306 loc) · 14.9 KB
/
box_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Modified from ultralytics/yolov5 by Zhiqiang Wang
import torch
from torch import nn, Tensor
from torchvision.ops import batched_nms
from . import _utils as det_utils
from typing import Tuple, List, Dict
class YoloHead(nn.Module):
def __init__(self, in_channels: List[int], num_anchors: int, num_classes: int):
super().__init__()
self.num_anchors = num_anchors # anchors
self.num_outputs = num_classes + 5 # number of outputs per anchor
self.head = nn.ModuleList(
nn.Conv2d(ch, self.num_outputs * self.num_anchors, 1) for ch in in_channels) # output conv
def get_result_from_head(self, features: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.head[idx](features),
but torchscript doesn't support this yet
"""
num_blocks = 0
for m in self.head:
num_blocks += 1
if idx < 0:
idx += num_blocks
i = 0
out = features
for module in self.head:
if i == idx:
out = module(features)
i += 1
return out
def forward(self, x: List[Tensor]) -> List[Tensor]:
all_pred_logits: List[Tensor] = [] # inference output
for i, features in enumerate(x):
pred_logits = self.get_result_from_head(features, i)
# Permute output from (N, A * K, H, W) to (N, A, H, W, K)
N, _, H, W = pred_logits.shape
pred_logits = pred_logits.view(N, self.num_anchors, -1, H, W)
pred_logits = pred_logits.permute(0, 1, 3, 4, 2) # Size=(N, A, H, W, K)
all_pred_logits.append(pred_logits)
return all_pred_logits
class SetCriterion(nn.Module):
"""This class computes the loss for YOLOv5.
Arguments:
variances:
"""
__annotations__ = {
'box_coder': det_utils.BoxCoder,
}
def __init__(
self,
strides: List[int],
anchor_grids: List[List[int]],
box: float = 0.05, # box loss gain
cls: float = 0.5, # cls loss gain
cls_pw: float = 1.0, # cls BCELoss positive_weight
obj: float = 1.0, # obj loss gain (scale with pixels)
obj_pw: float = 1.0, # obj BCELoss positive_weight
anchor_threshold: float = 4.0, # anchor-multiple threshold
iou_ratio: float = 1.0, # iou loss ratio (obj_loss = 1.0 or iou)
fl_gamma: float = 0.0, # focal loss gamma
layer_balance: List[float] = [4.0, 1.0, 0.4],
) -> None:
"""
Arguments:
weights (4-element tuple)
fg_iou_thresh (float)
bg_iou_thresh (float)
allow_low_quality_matches (bool)
"""
super().__init__()
self.strides = strides
self.anchor_grids = anchor_grids
self.anchor_threshold = anchor_threshold
self.fl_gamma = fl_gamma
self.layer_balance = layer_balance
self.cls_pw = cls_pw
self.obj_pw = obj_pw
self.cls = cls
self.obj = obj
self.box = box
self.iou_ratio = iou_ratio
def forward(
self,
head_outputs: List[Tensor],
targets: Tensor,
) -> Dict[str, Tensor]:
""" This performs the loss computation.
Parameters:
head_outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
targets_cls, targets_box, indices, anchors = self.select_training_samples(head_outputs, targets)
losses = self.compute_loss(head_outputs, targets_cls, targets_box, indices, anchors)
return losses
def select_training_samples(
self,
head_outputs: List[Tensor],
targets: Tensor,
) -> Tuple[List[Tensor], List[Tensor], List[Tuple[Tensor, Tensor, Tensor, Tensor]], List[Tensor]]:
# get boxes indices for each anchors
device = head_outputs[0].device
num_layers = len(head_outputs)
anchors = torch.as_tensor(self.anchor_grids, dtype=torch.float32, device=device)
strides = torch.as_tensor(self.strides, dtype=torch.float32, device=device)
anchors = anchors.view(num_layers, -1, 2) / strides.view(-1, 1, 1)
targets_cls, targets_box, indices, anchors_encode = self.assign_targets_to_anchors(
head_outputs, anchors, targets)
return targets_cls, targets_box, indices, anchors_encode
def assign_targets_to_anchors(
self,
head_outputs: List[Tensor],
anchors: Tensor,
targets: Tensor,
):
"""Assign ground truth boxes and targets to anchors.
Args:
gt_boxes (List[Tensor]): with shape num_targets x 4, ground truth boxes
gt_labels (List[Tensor]): with shape num_targets, labels of targets
anchors (Tensor): with shape num_priors x 4, XYXY_REL BoxMode
Returns:
boxes (List[Tensor]): with shape num_priors x 4 real values for anchors.
labels (List[Tensor]): with shape num_priros, labels for anchors.
"""
device = head_outputs[0].device
num_layers = len(head_outputs)
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
num_anchors = len(self.anchor_grids) # number of anchors
num_targets = len(targets) # number of targets
targets_cls, targets_box, anchors_encode = [], [], []
indices: List[Tuple[Tensor, Tensor, Tensor, Tensor]] = []
gain = torch.ones(7, device=device) # normalized to gridspace gain
# same as .repeat_interleave(num_targets)
ai = torch.arange(num_anchors, device=device).float().view(num_anchors, 1).repeat(1, num_targets)
targets = torch.cat((targets.repeat(num_anchors, 1, 1), ai[:, :, None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor([[0, 0],
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
], device=device).float() * g # offsets
for i in range(num_layers):
anchors_per_layer = anchors[i]
gain[2:6] = torch.tensor(head_outputs[i].shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
targets_with_gain = targets * gain
if num_targets:
# Matches
ratios_wh = targets_with_gain[:, :, 4:6] / anchors_per_layer[:, None] # wh ratio
ratios_filtering = torch.max(ratios_wh, 1. / ratios_wh).max(2)[0]
inds = torch.where(ratios_filtering < self.anchor_threshold)
targets_with_gain = targets_with_gain[inds] # filter
# Offsets
grid_xy = targets_with_gain[:, 2:4] # grid xy
grid_xy_inverse = gain[[2, 3]] - grid_xy # inverse
inds_jk = (grid_xy % 1. < g) & (grid_xy > 1.)
inds_lm = (grid_xy_inverse % 1. < g) & (grid_xy_inverse > 1.)
inds_ones = torch.ones_like(inds_jk[:, 0])[:, None]
inds = torch.cat((inds_ones, inds_jk, inds_lm), dim=1).T
targets_with_gain = targets_with_gain.repeat((5, 1, 1))[inds]
offsets = (torch.zeros_like(grid_xy)[None] + off[:, None])[inds]
else:
targets_with_gain = targets[0]
offsets = torch.tensor(0, device=device)
# Define
bc = targets_with_gain[:, :2].long().T # image, class
grid_xy = targets_with_gain[:, 2:4] # grid xy
grid_wh = targets_with_gain[:, 4:6] # grid wh
grid_ij = (grid_xy - offsets).long()
# Append
a = targets_with_gain[:, 6].long() # anchor indices
# image, anchor, grid indices
indices.append((bc[0], a, grid_ij[:, 1].clamp_(0, gain[3] - 1), grid_ij[:, 0].clamp_(0, gain[2] - 1)))
targets_box.append(torch.cat((grid_xy - grid_ij, grid_wh), 1)) # box
anchors_encode.append(anchors_per_layer[a]) # anchors
targets_cls.append(bc[1]) # class
return targets_cls, targets_box, indices, anchors_encode
@staticmethod
def label_smooth_bce(eps: float = 0.1):
'''
Return positive, negative label smoothing BCE targets
<https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441>
'''
return 1.0 - 0.5 * eps, 0.5 * eps
def compute_loss(
self,
head_outputs: List[Tensor],
targets_cls: List[Tensor],
targets_box: List[Tensor],
matched_idxs: List[Tuple[Tensor, Tensor, Tensor, Tensor]],
anchors: List[Tensor],
) -> Dict[str, Tensor]:
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
device = head_outputs[0].device
num_classes = head_outputs[0].shape[-1] - 5
loss_cls = torch.zeros(1, device=device)
loss_box = torch.zeros(1, device=device)
loss_obj = torch.zeros(1, device=device)
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cls_positive, cls_negative = self.label_smooth_bce(eps=0.0)
assert len(head_outputs) == len(self.layer_balance)
# Losses
num_targets = 0 # number of targets
num_output = len(head_outputs) # number of outputs
cls_pw = torch.tensor([self.cls_pw], device=device)
obj_pw = torch.tensor([self.obj_pw], device=device)
for i, pred_logits_per_layer in enumerate(head_outputs): # layer index, layer predictions
b, a, gj, gi = matched_idxs[i] # image, anchor, gridy, gridx
obj_logits = torch.zeros_like(pred_logits_per_layer[..., 0], device=device) # target obj
num_target_per_layer = b.shape[0] # number of targets
if num_target_per_layer:
num_targets += num_target_per_layer # cumulative targets
pred_logits_matched = pred_logits_per_layer[b, a, gj, gi] # prediction subset corresponding to targets
# Regression head
bbox_xy = pred_logits_matched[:, :2].sigmoid() * 2. - 0.5
bbox_wh = (pred_logits_matched[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
bbox_regression = torch.cat((bbox_xy, bbox_wh), 1).to(device) # predicted box
ciou = det_utils.bbox_ciou(bbox_regression.T, targets_box[i])
loss_box += (1.0 - ciou).mean() # iou loss
# Objectness head
# iou ratio
ciou_vals = torch.tensor(ciou.detach().clamp(0), dtype=obj_logits.dtype)
obj_logits[b, a, gj, gi] = (1.0 - self.iou_ratio) + (self.iou_ratio * ciou_vals)
# Classification head
if num_classes > 1: # cls loss (only if multiple classes)
cls_logits = torch.full_like(pred_logits_matched[:, 5:], cls_negative, device=device) # targets
cls_logits[torch.arange(num_target_per_layer), targets_cls[i]] = cls_positive
loss_cls += det_utils.cls_loss(pred_logits_matched[:, 5:], cls_logits, pos_weight=cls_pw) # BCE
loss_obj += det_utils.obj_loss(
pred_logits_per_layer[..., 4],
obj_logits,
pos_weight=obj_pw,
) * self.layer_balance[i] # obj loss
out_scaling = 3 / num_output # output count scaling
loss_box *= self.box * out_scaling
loss_obj *= self.obj * out_scaling * (1.4 if num_output == 4 else 1.)
loss_cls *= self.cls * out_scaling
return {
'cls_logits': loss_cls,
'bbox_regression': loss_box,
'objectness': loss_obj,
}
class PostProcess(nn.Module):
__annotations__ = {
'box_coder': det_utils.BoxCoder,
}
"""Performs Non-Maximum Suppression (NMS) on inference results"""
def __init__(
self,
score_thresh: float,
nms_thresh: float,
detections_per_img: int,
) -> None:
"""
Arguments:
score_thresh (float)
nms_thresh (float)
detections_per_img (int)
"""
super().__init__()
self.box_coder = det_utils.BoxCoder()
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img # maximum number of detections per image
def forward(
self,
head_outputs: List[Tensor],
anchors_tuple: Tuple[Tensor, Tensor, Tensor],
) -> List[Dict[str, Tensor]]:
""" Perform the computation. At test time, postprocess_detections is the final layer of YOLO.
Decode location preds, apply non-maximum suppression to location predictions based on conf
scores and threshold to a detections_per_img number of output predictions for both confidence
score and locations.
Parameters:
head_outputs : [batch_size, num_anchors, num_classes + 5] predicted locations and class/object confidence.
image_shapes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
batch_size, _, _, _, K = head_outputs[0].shape
all_pred_logits: List[Tensor] = []
for pred_logits in head_outputs:
pred_logits = pred_logits.reshape(batch_size, -1, K) # Size=(NN, HWA, K)
all_pred_logits.append(pred_logits)
all_pred_logits = torch.cat(all_pred_logits, dim=1)
detections: List[Dict[str, Tensor]] = []
for idx in range(batch_size): # image idx, image inference
pred_logits = torch.sigmoid(all_pred_logits[idx])
# Compute conf
# box_conf x class_conf, w/ shape: num_anchors x num_classes
scores = pred_logits[:, 5:] * pred_logits[:, 4:5]
boxes = self.box_coder.decode_single(pred_logits[:, :4], anchors_tuple)
# remove low scoring boxes
inds, labels = torch.where(scores > self.score_thresh)
boxes, scores = boxes[inds], scores[inds, labels]
# non-maximum suppression, independently done per level
keep = batched_nms(boxes, scores, labels, self.nms_thresh)
# keep only topk scoring head_outputs
keep = keep[:self.detections_per_img]
boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
detections.append({'scores': scores, 'labels': labels, 'boxes': boxes})
return detections