diff --git a/yolort/runtime/openvino_helper.py b/yolort/runtime/openvino_helper.py index aa00090f..44b626a2 100644 --- a/yolort/runtime/openvino_helper.py +++ b/yolort/runtime/openvino_helper.py @@ -39,7 +39,7 @@ def check_outputs(self, onnx_path, openvino_path, input_shape=(1, 3, 640, 640), test_inputs = {"images": np.random.randn(*input_shape).astype("float32")} session = onnxruntime.InferenceSession(onnx_path, providers=self.providers) ie = IECore() - net_ir = ie.read_network(model=(Path(openvino_path) / Path(onnx_path)).with_suffix(".xml")) + net_ir = ie.read_network(model=(Path(openvino_path) / Path(onnx_path).name).with_suffix(".xml")) exec_net_ir = ie.load_network(network=net_ir, device_name=self.device.upper()) out_ort = session.run(output_names=None, input_feed=test_inputs) out_ie = exec_net_ir.infer(inputs=test_inputs) @@ -52,8 +52,9 @@ def check_outputs(self, onnx_path, openvino_path, input_shape=(1, 3, 640, 640), if __name__ == "__main__": - onnx_path = "yolov5s.onnx" - openvino_path = "yolov5s_openvino/" + onnx_path = "../../yolov5s.onnx" + openvino_path = "../../yolov5s_openvino/" OE = OpenvinoExport("../../yolov5s.pt") - OE.export("yolov5s.onnx", "yolov5s_openvino") + # OE.export("../../yolov5s.onnx", openvino_path) OE.check_outputs(onnx_path, openvino_path) + print("finish") diff --git a/yolort/runtime/y_openvino.py b/yolort/runtime/y_openvino.py new file mode 100644 index 00000000..d35b7475 --- /dev/null +++ b/yolort/runtime/y_openvino.py @@ -0,0 +1,113 @@ +import logging +from pathlib import Path + +import cv2 +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms + +try: + import onnxruntime as ort +except ImportError: + ort = None + +try: + import openvino as ovo + from openvino.inference_engine import IECore +except ImportError: + ovo = None + IECore = None + + +logger = logging.getLogger(__name__) + + +class PredictorOVO: + def __init__(self, engine_path: str, device: str = "cpu") -> None: + self.engine_path = Path(engine_path) + self.device = device + self.ovo_net = self._build_ovonet() + + def _build_ovonet(self): + logger.info("Openvino inference engine was initialized.") + if ovo is not None: + if self.device != "cpu": + logger.info("Openvino only support CPU.") + self.device = "CPU" + else: + self.device = self.device.upper() + else: + raise ImportError( + 'openvino is not installed, please use command "pip install openvino-dev" firstly.' + ) + ie = IECore() + net_ir = ie.read_network(model=self.engine_path) + exec_net_ir = ie.load_network(network=net_ir, device_name=self.device) + return exec_net_ir + + def name_loader_simple_resize(self, img_path: str, new_shape=(640, 640)): + image = cv2.imread(img_path) + image = cv2.resize(image, new_shape, interpolation=cv2.INTER_LINEAR) + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + image = image.astype(np.float32) / 255.0 + image = np.transpose(image, axes=(2, 0, 1)) + image = np.expand_dims(image, axis=0) + image = np.ascontiguousarray(image) + return image + + def array_loader_simple_resize(self, img_array, new_shape=(640, 640)): + for i, array in enumerate(img_array): + if array.shape[-2:] != new_shape: + img_array[i] = cv2.resize(array, new_shape, interpolation=cv2.INTER_LINEAR) + img_array[i] = cv2.cvtColor(img_array[i], cv2.COLOR_BGR2RGB) + img_array[i] = np.transpose(img_array[i], axes=(2, 0, 1)) + return np.ascontiguousarray(np.stack(img_array, axis=0).astype(np.float32) / 255.0) + + def __call__(self, inputs, nms_scores=0.45, cls_score=0.2): + inputs = self.check_input(inputs) + outputs = self.ovo_net.infer(inputs=inputs) + outputs = self.nms(outputs, nms_scores, cls_score) + return outputs + + def check_input(self, inputs): + if isinstance(inputs, str): + inputs = self.name_loader_simple_resize(inputs) + elif isinstance(inputs, (list, tuple)): + inputs = self.array_loader_simple_resize(inputs) + elif isinstance(inputs, np.ndarray): + if len(inputs.shape) < 3 or len(inputs.shape) > 4: + logger.error("Wrong inputs shape!") + exit() + elif len(inputs.shape) == 3: + inputs = np.expand_dims(inputs, axis=0) + inputs = np.ascontiguousarray(inputs) + elif len(inputs.shape) == 4: + inputs = np.ascontiguousarray(inputs) + return {"images": inputs} + + def nms(self, outputs, iou_score=0.45, cls_score=0.2, shape=(640, 640)): + result_list = [] + batch = outputs["boxes"].shape[0] + for i in range(batch): + boxes, cls, scores = ( + torch.from_numpy(outputs["boxes"][i]), + torch.from_numpy(outputs["scores"][i].argmax(1)), + torch.from_numpy(outputs["scores"][i].max(1)), + ) + selected = scores >= cls_score + index = batched_nms(boxes[selected], scores[selected], cls[selected], iou_score) + boxes = boxes[index] + boxes[0].clamp_(0, shape[1]) # x1 + boxes[1].clamp_(0, shape[0]) # y1 + boxes[2].clamp_(0, shape[1]) # x2 + boxes[3].clamp_(0, shape[0]) # y2 + result_list.append([boxes, scores[index], cls[index]]) + + return result_list + + +if __name__ == "__main__": + ovo = PredictorOVO("../../yolov5s_openvino/yolov5s.xml") + inputs = "../../test/assets/zidane.jpg" + out = ovo(inputs) + print(out)