diff --git a/yolort/models/box_head.py b/yolort/models/box_head.py index 18506a75..4eb6f73b 100644 --- a/yolort/models/box_head.py +++ b/yolort/models/box_head.py @@ -19,6 +19,8 @@ def __init__( num_classes: int, ): super().__init__() + if not isinstance(in_channels, list): + in_channels = [in_channels] * num_anchors self.num_anchors = num_anchors # anchors self.num_classes = num_classes self.num_outputs = num_classes + 5 # number of outputs per anchor diff --git a/yolort/models/yolo_lite.py b/yolort/models/yolo_lite.py new file mode 100644 index 00000000..0d3b15bf --- /dev/null +++ b/yolort/models/yolo_lite.py @@ -0,0 +1,160 @@ +from torch import nn +from torchvision.models import mobilenet +from torchvision.models._utils import IntermediateLayerGetter +from torchvision.models.detection.backbone_utils import _validate_trainable_layers +from torchvision.ops import misc as misc_nn_ops +from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool + +from .yolo import YOLO + +__all__ = ["yolov5_mobilenet_v3_small_fpn"] + + +class BackboneWithFPN(nn.Module): + """ + Adds a FPN on top of a model. + Internally, it uses torchvision.models._utils.IntermediateLayerGetter to + extract a submodel that returns the feature maps specified in return_layers. + The same limitations of IntermediateLayerGetter apply here. + + Args: + backbone (nn.Module) + return_layers (Dict[name, new_name]): a dict containing the names + of the modules for which the activations will be returned as + the key of the dict, and the value of the dict is the name + of the returned activation (which the user can specify). + in_channels_list (List[int]): number of channels for each feature map + that is returned, in the order they are present in the OrderedDict + out_channels (int): number of channels in the FPN. + + Attributes: + out_channels (int): the number of channels in the FPN + """ + + def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None): + super().__init__() + + if extra_blocks is None: + extra_blocks = LastLevelMaxPool() + + self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) + self.fpn = FeaturePyramidNetwork( + in_channels_list=in_channels_list, + out_channels=out_channels, + extra_blocks=extra_blocks, + ) + self.out_channels = out_channels + + def forward(self, x): + x = self.body(x) + x = self.fpn(x) + + return list(x.values()) # unpack OrderedDict into two lists for easier handling + + +def mobilenet_backbone( + backbone_name, + pretrained, + norm_layer=misc_nn_ops.FrozenBatchNorm2d, + trainable_layers=2, + returned_layers=None, +): + backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer).features + + # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. + # The first and last blocks are always included because they are the C0 (conv1) and Cn. + stage_indices = ( + [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] + ) + num_stages = len(stage_indices) + + # find the index of the layer from which we wont freeze + assert 0 <= trainable_layers <= num_stages + freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] + + for b in backbone[:freeze_before]: + for parameter in b.parameters(): + parameter.requires_grad_(False) + + out_channels = 256 + + if returned_layers is None: + returned_layers = [num_stages - 2, num_stages - 1] + assert min(returned_layers) >= 0 and max(returned_layers) < num_stages + return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)} + + in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers] + return BackboneWithFPN( + backbone, + return_layers, + in_channels_list, + out_channels, + extra_blocks=LastLevelMaxPool(), + ) + + +def _yolov5_mobilenet_v3_small_fpn( + weights_name, + pretrained=False, + progress=True, + num_classes=80, + pretrained_backbone=True, + trainable_backbone_layers=None, + **kwargs, +): + trainable_backbone_layers = _validate_trainable_layers( + pretrained or pretrained_backbone, trainable_backbone_layers, 6, 3 + ) + + if pretrained: + pretrained_backbone = False + backbone = mobilenet_backbone( + "mobilenet_v3_small", + pretrained_backbone, + trainable_layers=trainable_backbone_layers, + ) + + model = YOLO(backbone, num_classes, **kwargs) + + return model + + +def yolov5_mobilenet_v3_small_fpn( + pretrained=False, + progress=True, + num_classes=80, + pretrained_backbone=True, + trainable_backbone_layers=None, + **kwargs, +): + """ + Constructs a high resolution YOLOv5 model with a MobileNetV3-Large FPN backbone. + It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See + :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more + details. + + Note: + We do not provide a pre-trained model with mobilenet as the backbone now, this function + is just used as an example of how to construct a YOLOv5 model with TorchVision's pre-trained + MobileNetV3-Small FPN backbone. + + Args: + pretrained (bool): If True, returns a model pre-trained on COCO train2017 + progress (bool): If True, displays a progress bar of the download to stderr + num_classes (int): number of output classes of the model (including the background) + pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet + trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting + from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers + are trainable. + """ + weights_name = "yolov5_mobilenet_v3_small_fpn_coco" + + return _yolov5_mobilenet_v3_small_fpn( + weights_name, + pretrained=pretrained, + progress=progress, + num_classes=num_classes, + pretrained_backbone=pretrained_backbone, + trainable_backbone_layers=trainable_backbone_layers, + **kwargs, + )