-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathpanformer_swinl_24e_coco_panoptic.py
42 lines (42 loc) · 1.23 KB
/
panformer_swinl_24e_coco_panoptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
_base_ = './base.py'
_dim_ = 256
_num_levels_=4
model = dict(
type='PanSeg',
# get swin-large
#import os
#import torch
#os.system('wget -O checkpoints/swinl.pth https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth')
#model = torch.load('checkpoints/swinl.pth')
#torch.save(model['model'], 'checkpoints/swinl.pth')
#print('DONE, swin-large was saved as checkpoints/swinl.pth')
pretrained='./checkpoints/swinl.pth',
backbone=dict(
type='SwinTransformer',
embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
ape=False,
patch_norm=True,
out_indices=(1, 2, 3),
use_checkpoint=False),
neck=dict(
type='ChannelMapper',
in_channels=[384, 768, 1536],
kernel_size=1,
out_channels=_dim_,
act_cfg=None,
norm_cfg=dict(type='GN', num_groups=32),
num_outs=_num_levels_),
bbox_head=dict(
quality_threshold_things=0.3,
quality_threshold_stuff=0.3,
)
)