-
Notifications
You must be signed in to change notification settings - Fork 17
/
losses.py
233 lines (200 loc) · 7.95 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn.functional as F
import numpy as np
import torchvision
from torch import nn
from utils import apply_imagenet_normalization, apply_vggface_normalization
@torch.jit.script
def fuse_math_min_mean_pos(x):
r"""Fuse operation min mean for hinge loss computation of positive
samples"""
minval = torch.min(x - 1, x * 0)
loss = -torch.mean(minval)
return loss
@torch.jit.script
def fuse_math_min_mean_neg(x):
r"""Fuse operation min mean for hinge loss computation of negative
samples"""
minval = torch.min(-x - 1, x * 0)
loss = -torch.mean(minval)
return loss
class _PerceptualNetwork(nn.Module):
def __init__(self, network, layer_name_mapping, layers):
super().__init__()
self.network = network.cuda()
self.layer_name_mapping = layer_name_mapping
self.layers = layers
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
output = {}
for i, layer in enumerate(self.network):
x = layer(x)
layer_name = self.layer_name_mapping.get(i, None)
if layer_name in self.layers:
output[layer_name] = x
return output
def _vgg19(layers):
network = torchvision.models.vgg19()
state_dict = torch.utils.model_zoo.load_url(
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", map_location=torch.device("cpu"), progress=True
)
network.load_state_dict(state_dict)
network = network.features
layer_name_mapping = {
1: "relu_1_1",
3: "relu_1_2",
6: "relu_2_1",
8: "relu_2_2",
11: "relu_3_1",
13: "relu_3_2",
15: "relu_3_3",
17: "relu_3_4",
20: "relu_4_1",
22: "relu_4_2",
24: "relu_4_3",
26: "relu_4_4",
29: "relu_5_1",
}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _vgg_face(layers):
network = torchvision.models.vgg16(num_classes=2622)
state_dict = torch.utils.model_zoo.load_url(
"http://www.robots.ox.ac.uk/~albanie/models/pytorch-mcn/" "vgg_face_dag.pth", map_location=torch.device("cpu"), progress=True
)
feature_layer_name_mapping = {
0: "conv1_1",
2: "conv1_2",
5: "conv2_1",
7: "conv2_2",
10: "conv3_1",
12: "conv3_2",
14: "conv3_3",
17: "conv4_1",
19: "conv4_2",
21: "conv4_3",
24: "conv5_1",
26: "conv5_2",
28: "conv5_3",
}
new_state_dict = {}
for k, v in feature_layer_name_mapping.items():
new_state_dict["features." + str(k) + ".weight"] = state_dict[v + ".weight"]
new_state_dict["features." + str(k) + ".bias"] = state_dict[v + ".bias"]
classifier_layer_name_mapping = {0: "fc6", 3: "fc7", 6: "fc8"}
for k, v in classifier_layer_name_mapping.items():
new_state_dict["classifier." + str(k) + ".weight"] = state_dict[v + ".weight"]
new_state_dict["classifier." + str(k) + ".bias"] = state_dict[v + ".bias"]
network.load_state_dict(new_state_dict)
layer_name_mapping = {
1: "relu_1_1",
3: "relu_1_2",
6: "relu_2_1",
8: "relu_2_2",
11: "relu_3_1",
13: "relu_3_2",
15: "relu_3_3",
18: "relu_4_1",
20: "relu_4_2",
22: "relu_4_3",
25: "relu_5_1",
}
return _PerceptualNetwork(network.features, layer_name_mapping, layers)
class PerceptualLoss(nn.Module):
def __init__(self, layers_weight={"relu_1_1": 0.03125, "relu_2_1": 0.0625, "relu_3_1": 0.125, "relu_4_1": 0.25, "relu_5_1": 1.0}, n_scale=3):
super().__init__()
self.vgg19 = _vgg19(layers_weight.keys())
self.vggface = _vgg_face(layers_weight.keys())
self.criterion = nn.L1Loss()
self.layers_weight, self.n_scale = layers_weight, n_scale
def forward(self, input, target):
self.vgg19.eval()
self.vggface.eval()
loss = 0
loss += self.criterion(input, target)
features_vggface_input = self.vggface(apply_vggface_normalization(input))
features_vggface_target = self.vggface(apply_vggface_normalization(target))
input = apply_imagenet_normalization(input)
target = apply_imagenet_normalization(target)
features_vgg19_input = self.vgg19(input)
features_vgg19_target = self.vgg19(target)
for layer, weight in self.layers_weight.items():
loss += weight * self.criterion(features_vggface_input[layer], features_vggface_target[layer].detach()) / 255
loss += weight * self.criterion(features_vgg19_input[layer], features_vgg19_target[layer].detach())
for i in range(self.n_scale):
input = F.interpolate(input, mode="bilinear", scale_factor=0.5, align_corners=False, recompute_scale_factor=True)
target = F.interpolate(target, mode="bilinear", scale_factor=0.5, align_corners=False, recompute_scale_factor=True)
features_vgg19_input = self.vgg19(input)
features_vgg19_target = self.vgg19(target)
loss += weight * self.criterion(features_vgg19_input[layer], features_vgg19_target[layer].detach())
return loss
class GANLoss(nn.Module):
# Update generator: gan_loss(fake_output, True, False) + other losses
# Update discriminator: gan_loss(fake_output(detached), False, True) + gan_loss(real_output, True, True)
def __init__(self):
super().__init__()
def forward(self, dis_output, t_real, dis_update=True):
r"""GAN loss computation.
Args:
dis_output (tensor or list of tensors): Discriminator outputs.
t_real (bool): If ``True``, uses the real label as target, otherwise
uses the fake label as target.
dis_update (bool): If ``True``, the loss will be used to update the
discriminator, otherwise the generator.
Returns:
loss (tensor): Loss value.
"""
if dis_update:
if t_real:
loss = fuse_math_min_mean_pos(dis_output)
else:
loss = fuse_math_min_mean_neg(dis_output)
else:
loss = -torch.mean(dis_output)
return loss
class FeatureMatchingLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, fake_features, real_features):
num_d = len(fake_features)
dis_weight = 1.0 / num_d
loss = fake_features[0][0].new_tensor(0)
for i in range(num_d):
for j in range(len(fake_features[i])):
tmp_loss = self.criterion(fake_features[i][j], real_features[i][j].detach())
loss += dis_weight * tmp_loss
return loss
class EquivarianceLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, kp_d, reverse_kp):
loss = self.criterion(kp_d[:, :, :2], reverse_kp)
return loss
class KeypointPriorLoss(nn.Module):
def __init__(self, Dt=0.1, zt=0.33):
super().__init__()
self.Dt, self.zt = Dt, zt
def forward(self, kp_d):
# use distance matrix to avoid loop
dist_mat = torch.cdist(kp_d, kp_d).square()
loss = (
torch.max(0 * dist_mat, self.Dt - dist_mat).sum((1, 2)).mean()
+ torch.abs(kp_d[:, :, 2].mean(1) - self.zt).mean()
- kp_d.shape[1] * self.Dt
)
return loss
class HeadPoseLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
def forward(self, yaw, pitch, roll, real_yaw, real_pitch, real_roll):
loss = (self.criterion(yaw, real_yaw.detach()) + self.criterion(pitch, real_pitch.detach()) + self.criterion(roll, real_roll.detach())) / 3
return loss / np.pi * 180
class DeformationPriorLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, delta_d):
loss = delta_d.abs().mean()
return loss