-
Notifications
You must be signed in to change notification settings - Fork 1
/
cheat_sheet.tex
176 lines (164 loc) · 5.11 KB
/
cheat_sheet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
\documentclass[10pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage[landscape]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,relsize}
\usepackage{color,graphicx,overpic}
% Turn off header and footer
\pagestyle{empty}
\geometry{top=.25in,left=.25in,right=.25in,bottom=.25in}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{\z@}{3ex}{2ex}
{\normalfont\normalsize\bfseries\textit}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{\z@}{2ex}{0.5ex}
{\normalfont\small\bfseries}}
\makeatother
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}
\input{math_commands.tex}
\newcommand{\ruler}{\\\rule{\columnwidth}{0.25pt}\\}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols*}{3}
% multicol parameters
% These lengths are set only within the two main columns
% \setlength{\columnseprule}{0.1pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{0pt}
\section{Geometry of Image Formation}
Pin hole camera:
$x = \frac{-fX}{Z}, y = \frac{-fY}{Z}$
\ruler
Projection of lines $\bX = \bA + \lambda\bD$:
$\lim_{\lambda\to\infty}\bp=f\frac{\bA+\lambda\bD}{A_Z+\lambda D_Z}=f\frac{\bD}{D_Z}$
\ruler
Projection of planes $\bX\cdot\bN = d$:
$\lim_{Z\to\infty}\bp\cdot\bN=0 \Rightarrow xN_x+yN_y+fN_z=0$
\ruler
Terrestrial perspective:\\
Ground plane has normal $\bN = (0,1,0)$ and projects to $y=0$.\\
Camera height $h_c$; an object of height $\delta Y$ with bottom at $(X, -h_c, Z)$ and
top at $(X, \delta Y - h_c, Z)$. The bottom projects to $(fX/Z, -fh_c/Z)$ and
top projects to $(fX/Z, f(\delta Y - h_c)/Z)$.
\section{Geometric Transformations}
\textbf{Pose}: the position and orientation of the object with respect to the camera.
6 degrees of freedom.\\
\textbf{Shape}: the coordinates of the points of an object relative to a coordinate frame
on the object; invariant when the object undergoes rotations and translations.
\ruler
\textbf{Euclidean Transformations}: rotations and translation are isometries or
regid body motions that preserves distances between any pair of points.
\ruler
\textbf{Orthogonal Transformations}:\\
preserves inner products: $\ba\cdot\bb = \psi(\ba)\cdot\psi(\bb)$\\
preserves norms: $\|\ba\| = \|\psi(\ba)\|$\\
are isometries: $(\psi(\ba)-\psi(\bb))\cdot(\psi(\ba)-\psi(\bb)) = (\ba-\bb)\cdot(\ba-\bb)$
\ruler
\textbf{Orthogonal matrices}:\\
$\tp{\bA} = \inv{\bA}$, $\det(\bA)^2 = 1 \Rightarrow \det(\bA) = +1 \mbox{ or } -1$.\\
$\underbrace{
\begin{bmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{bmatrix}
}_{\text{rotation, $\det = +1$}}
\underbrace{
\begin{bmatrix}
\cos\theta & \sin\theta\\
\sin\theta & -\cos\theta
\end{bmatrix}
}_{\text{rotation, $\det = -1$}}$
\ruler
\textbf{Group structure of isometries}:\\
$\psi(\ba)=\bA\ba+\bt$, $\bA$ is orthogonal matrix.\\
$\psi_1(\ba)=\bA_1\ba+\bt_1, \psi_2(\ba)=\bA_2\ba+\bt_2$,
$\psi_1\circ\psi_2(\ba)=(\bA_1\bA_2)\ba+(\bA_1\bt_2+\bt_1)$,
\ruler
\textbf{Skew-symmetric matrix}:
$\bS = -\tp{\bS}$\\
\textbf{Cross product Matrix}:\\
$
\begin{bmatrix}
a_1\\
a_2\\
a_3
\end{bmatrix}
\wedge
\begin{bmatrix}
b_1\\
b_2\\
b_3
\end{bmatrix}
=
\begin{bmatrix}
a_2b_3-a_3b_2\\
a_3b_1-a_1b_3\\
a_1b_2-a_2b_1
\end{bmatrix}
\Rightarrow
\hat{\ba}
\defeq
\begin{bmatrix}
0 & -a_3 & a_2\\
a_3 & 0 & -a_1\\
-a_2 & a_1 & 0
\end{bmatrix}
$
\ruler
\textbf{Roderigues Formula}:\\
$\bR = e^{\phi\hat{s}} = \bI + \sin\phi\hat{\bs}+(1-\cos\phi)\hat{\bs}^2$,\\
$\bs$ is a unit vector along $\omega$ and $\phi = \|\omega\|t$ is the total amount of rotation.
\ruler
\textbf{Affine transformations} is a nonsingular linear transformation followed by a translation.
$\psi(\ba)=\bA\ba+\bt$ ($\det \bA \neq 0$) and preserves parallelism and midpoints
and does \textbf{not} preserve lengths, angles, areas.\\
Ex. rotation, anisotropic scaling, sheer.\\
\columnbreak
\textbf{Degrees of freedom}:\\
2D: isometry: $1 + 2 = 3$, affine: $4 + 2 = 6$\\
3D: isometry: $3 + 3 = 6$, affine: $9 + 3 = 12$
\section{Optical Flow}
Motion at 3D world projects to motion in the image. At every point $(x,y)$ in the image we get a
2D vector, corresponding to the motion of the feature located at that point.\\
\textbf{egomotion} is the optical flow field of a moving observer.
\ruler
$\bt$ is translational velocity of camera, $\bomega$ is angular velocity of camera.
$
\begin{bmatrix}
u\\v
\end{bmatrix}
=
\frac{1}{Z}
\begin{bmatrix}
-1 & 0 & x\\
0 & -1 & y
\end{bmatrix}
\begin{bmatrix}
t_x\\t_y\\t_z
\end{bmatrix}
+
\begin{bmatrix}
xy & -(1+x^2) & y\\
1+y^2 & -xy & -x
\end{bmatrix}
\begin{bmatrix}
\omega_x\\\omega_y\\\omega_z
\end{bmatrix}
$
\section{Radiometry of Image Formation}
\textbf{Irradiance}:\\
$I(x,y)$ measures how much light is captured at pixel $(x,y)$.
Radiant power per unit area with units W/$\text{m}^2$, denoted by E.
\ruler
$L = \frac{\text{Power}}{(dAcos\theta)(d\omega)}$, units are $Wm^{-2}sr^{-1}$.
\ruler
\textbf{Lambertian model}: $L = \rho\lambda n \cdot s$
\end{multicols*}
\end{document}