-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathops.py
186 lines (140 loc) · 6.79 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import tensorflow as tf
from tensorflow.contrib.layers.python.layers import batch_norm
import warnings
def log_sum_exp(x, axis=1):
m = tf.reduce_max(x, keep_dims=True)
return m + tf.log(tf.reduce_sum(tf.exp(x - m), axis=axis))
#the implements of leakyRelu
def lrelu(x, alpha= 0.2, name="LeakyReLU"):
return tf.maximum(x , alpha*x)
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h= 2, d_w=2, stddev=0.02, spectural_normed=False,
name="conv2d", padding='SAME'):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.random_normal_initializer(stddev=stddev))
if spectural_normed:
conv = tf.nn.conv2d(input_, spectral_norm(w), strides=[1, d_h, d_w, 1], padding=padding)
else:
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding=padding)
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def instance_norm(input, scope="instance_norm"):
with tf.variable_scope(scope):
depth = input.get_shape()[3]
scale = tf.get_variable("scale", [depth], initializer=tf.random_normal_initializer(1.0, 0.02, dtype=tf.float32))
offset = tf.get_variable("offset", [depth], initializer=tf.constant_initializer(0.0))
mean, variance = tf.nn.moments(input, axes=[1,2], keep_dims=True)
epsilon = 1e-5
inv = tf.rsqrt(variance + epsilon)
normalized = (input - mean) * inv
return scale * normalized + offset
def weight_normalization(weight, scope='weight_norm'):
"""based upon openai's https://github.com/openai/generating-reviews-discovering-sentiment/blob/master/encoder.py"""
weight_shape_list = weight.get_shape().as_list()
if len(weight.get_shape()) == 2: #I think you want to sum on axis [0,1,2]
g_shape = [weight_shape_list[1]]
else:
raise ValueError('dimensions unacceptable for weight normalization')
with tf.variable_scope(scope):
g = tf.get_variable('g_scalar', shape=g_shape, initializer = tf.ones_initializer())
weight = g * tf.nn.l2_normalize(weight, dim=0)
return weight
def de_conv(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]], dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=stddev))
try:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
# Support for verisons of TensorFlow before 0.7.0
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], tf.float32, initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, w, biases
else:
return deconv
def avgpool2d(x, k=2):
return tf.nn.avg_pool(x, ksize=[1, k, k ,1], strides=[1, k, k, 1], padding='SAME')
def upscale(x, scale):
_, h, w, _ = get_conv_shape(x)
return resize_nearest_neighbor(x, (h * scale, w * scale))
def get_conv_shape(tensor):
shape = int_shape(tensor)
return shape
def int_shape(tensor):
shape = tensor.get_shape().as_list()
return [num if num is not None else -1 for num in shape]
def resize_nearest_neighbor(x, new_size):
x = tf.image.resize_nearest_neighbor(x, new_size)
return x
def fully_connect(input_, output_size, scope=None, stddev=0.02, spectural_normed=True,
bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size], tf.float32,
initializer=tf.constant_initializer(bias_start))
if spectural_normed:
mul = tf.matmul(input_, spectral_norm(matrix))
else:
mul = tf.matmul(input_, matrix)
if with_w:
return mul + bias, matrix, bias
else:
return mul + bias
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
x_shapes = x.get_shape()
y_shapes = y.get_shape()
return tf.concat(3 , [x , y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2] , y_shapes[3]])])
def batch_normal(input , scope="scope" , reuse=False):
return batch_norm(input , epsilon=1e-5, decay=0.9 , scale=True, scope=scope , reuse=reuse, fused=True, updates_collections=None)
def Residual(x, output_dims=256, kernel=3, strides=1, residual_name='resi'):
with tf.variable_scope('residual_{}'.format(residual_name)) as scope:
conv1 = instance_norm(conv2d(x, output_dims, k_h=kernel, k_w=kernel, d_h=strides, d_w=strides, name="conv1"), scope='in1')
conv2 = instance_norm(conv2d(tf.nn.relu(conv1), output_dims, k_h=kernel, k_w=kernel,
d_h=strides, d_w=strides, name="conv2"), scope='in2')
resi = x + conv2
return tf.nn.relu(resi)
NO_OPS = 'NO_OPS'
def _l2normalize(v, eps=1e-12):
return v / (tf.reduce_sum(v ** 2) ** 0.5 + eps)
def spectral_norm(w, iteration= 1):
w_shape = w.shape.as_list()
w = tf.reshape(w, [-1, w_shape[-1]])
# w = tf.reshape(w, [1, w.shape.as_list()[0] * w.shape.as_list()[1]])
u = tf.get_variable("u", [1, w.shape.as_list()[-1]], initializer=tf.truncated_normal_initializer(), trainable=False)
u_hat = u
v_hat = None
for i in range(iteration):
"""
power iteration
Usually iteration = 1 will be enough
"""
v_ = tf.matmul(u_hat, tf.transpose(w))
v_hat = _l2normalize(v_)
u_ = tf.matmul(v_hat, w)
u_hat = _l2normalize(u_)
#real_sn = tf.svd(w, compute_uv=False)[...,0]
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat))
w_norm = w / sigma
#Get the real spectral norm
#real_sn_after = tf.svd(w_norm, compute_uv=False)[..., 0]
#frobenius norm
#f_norm = tf.norm(w, ord='fro', axis=[0, 1])
#tf.summary.scalar("real_sn", real_sn)
tf.summary.scalar("powder_sigma", tf.reduce_mean(sigma))
#tf.summary.scalar("real_sn_afterln", real_sn_after)
#tf.summary.scalar("f_norm", f_norm)
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = tf.reshape(w_norm, w_shape)
return w_norm