-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathmodel_mnist.py
225 lines (147 loc) · 8.69 KB
/
model_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from utils import save_images, vis_square,sample_label
from tensorflow.contrib.layers.python.layers import xavier_initializer
import cv2
from ops import conv2d, lrelu, de_conv, fully_connect, conv_cond_concat, batch_normal
import tensorflow as tf
import numpy as np
class CGAN(object):
# build model
def __init__(self, data_ob, sample_dir, output_size, learn_rate, batch_size, z_dim, y_dim, log_dir
, model_path, visua_path):
self.data_ob = data_ob
self.sample_dir = sample_dir
self.output_size = output_size
self.learn_rate = learn_rate
self.batch_size = batch_size
self.z_dim = z_dim
self.y_dim = y_dim
self.log_dir = log_dir
self.model_path = model_path
self.vi_path = visua_path
self.channel = self.data_ob.shape[2]
self.images = tf.placeholder(tf.float32, [batch_size, self.output_size, self.output_size, self.channel])
self.z = tf.placeholder(tf.float32, [self.batch_size, self.z_dim])
self.y = tf.placeholder(tf.float32, [self.batch_size, self.y_dim])
def build_model(self):
self.fake_images = self.gern_net(self.z, self.y)
G_image = tf.summary.image("G_out", self.fake_images)
##the loss of gerenate network
D_pro, D_logits = self.dis_net(self.images, self.y, False)
D_pro_sum = tf.summary.histogram("D_pro", D_pro)
G_pro, G_logits = self.dis_net(self.fake_images, self.y, True)
G_pro_sum = tf.summary.histogram("G_pro", G_pro)
D_fake_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(G_pro), logits=G_logits))
D_real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(D_pro), logits=D_logits))
G_fake_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(G_pro), logits=G_logits))
self.D_loss = D_real_loss + D_fake_loss
self.G_loss = G_fake_loss
loss_sum = tf.summary.scalar("D_loss", self.D_loss)
G_loss_sum = tf.summary.scalar("G_loss", self.G_loss)
self.merged_summary_op_d = tf.summary.merge([loss_sum, D_pro_sum])
self.merged_summary_op_g = tf.summary.merge([G_loss_sum, G_pro_sum, G_image])
t_vars = tf.trainable_variables()
self.d_var = [var for var in t_vars if 'dis' in var.name]
self.g_var = [var for var in t_vars if 'gen' in var.name]
self.saver = tf.train.Saver()
def train(self):
opti_D = tf.train.AdamOptimizer(learning_rate=self.learn_rate, beta1=0.5).minimize(self.D_loss, var_list=self.d_var)
opti_G = tf.train.AdamOptimizer(learning_rate=self.learn_rate, beta1=0.5).minimize(self.G_loss,
var_list=self.g_var)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init)
summary_writer = tf.summary.FileWriter(self.log_dir, graph=sess.graph)
step = 0
while step <= 10000:
realbatch_array, real_labels = self.data_ob.getNext_batch(step)
# Get the z
batch_z = np.random.uniform(-1, 1, size=[self.batch_size, self.z_dim])
# batch_z = np.random.normal(0 , 0.2 , size=[batch_size , sample_size])
_, summary_str = sess.run([opti_D, self.merged_summary_op_d],
feed_dict={self.images: realbatch_array, self.z: batch_z, self.y: real_labels})
summary_writer.add_summary(summary_str, step)
_, summary_str = sess.run([opti_G, self.merged_summary_op_g],
feed_dict={self.z: batch_z, self.y: real_labels})
summary_writer.add_summary(summary_str, step)
if step % 50 == 0:
D_loss = sess.run(self.D_loss, feed_dict={self.images: realbatch_array, self.z: batch_z, self.y: real_labels})
fake_loss = sess.run(self.G_loss, feed_dict={self.z: batch_z, self.y: real_labels})
print("Step %d: D: loss = %.7f G: loss=%.7f " % (step, D_loss, fake_loss))
if np.mod(step, 50) == 1 and step != 0:
sample_images = sess.run(self.fake_images, feed_dict={self.z: batch_z, self.y: sample_label()})
save_images(sample_images, [8, 8],
'./{}/train_{:04d}.png'.format(self.sample_dir, step))
self.saver.save(sess, self.model_path)
step = step + 1
save_path = self.saver.save(sess, self.model_path)
print ("Model saved in file: %s" % save_path)
def test(self):
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
self.saver.restore(sess, self.model_path)
sample_z = np.random.uniform(1, -1, size=[self.batch_size, self.z_dim])
output = sess.run(self.fake_images, feed_dict={self.z: sample_z, self.y: sample_label()})
save_images(output, [8, 8], './{}/test{:02d}_{:04d}.png'.format(self.sample_dir, 0, 0))
image = cv2.imread('./{}/test{:02d}_{:04d}.png'.format(self.sample_dir, 0, 0), 0)
cv2.imshow("test", image)
cv2.waitKey(-1)
print("Test finish!")
def visual(self):
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
self.saver.restore(sess, self.model_path)
realbatch_array, real_labels = self.data_ob.getNext_batch(0)
batch_z = np.random.uniform(-1, 1, size=[self.batch_size, self.z_dim])
# visualize the weights 1 or you can change weights_2 .
conv_weights = sess.run([tf.get_collection('weight_2')])
vis_square(self.vi_path, conv_weights[0][0].transpose(3, 0, 1, 2), type=1)
# visualize the activation 1
ac = sess.run([tf.get_collection('ac_2')],
feed_dict={self.images: realbatch_array[:64], self.z: batch_z, self.y: sample_label()})
vis_square(self.vi_path, ac[0][0].transpose(3, 1, 2, 0), type=0)
print("the visualization finish!")
def gern_net(self, z, y):
with tf.variable_scope('generator') as scope:
yb = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim])
z = tf.concat([z, y], 1)
c1, c2 = int( self.output_size / 4), int(self.output_size / 2 )
# 10 stand for the num of labels
d1 = tf.nn.relu(batch_normal(fully_connect(z, output_size=1024, scope='gen_fully'), scope='gen_bn1'))
d1 = tf.concat([d1, y], 1)
d2 = tf.nn.relu(batch_normal(fully_connect(d1, output_size=7*7*2*64, scope='gen_fully2'), scope='gen_bn2'))
d2 = tf.reshape(d2, [self.batch_size, c1, c1, 64 * 2])
d2 = conv_cond_concat(d2, yb)
d3 = tf.nn.relu(batch_normal(de_conv(d2, output_shape=[self.batch_size, c2, c2, 128], name='gen_deconv1'), scope='gen_bn3'))
d3 = conv_cond_concat(d3, yb)
d4 = de_conv(d3, output_shape=[self.batch_size, self.output_size, self.output_size, self.channel],
name='gen_deconv2', initializer = xavier_initializer())
return tf.nn.sigmoid(d4)
def dis_net(self, images, y, reuse=False):
with tf.variable_scope("discriminator") as scope:
if reuse == True:
scope.reuse_variables()
# mnist data's shape is (28 , 28 , 1)
yb = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim])
# concat
concat_data = conv_cond_concat(images, yb)
conv1, w1 = conv2d(concat_data, output_dim=10, name='dis_conv1')
tf.add_to_collection('weight_1', w1)
conv1 = lrelu(conv1)
conv1 = conv_cond_concat(conv1, yb)
tf.add_to_collection('ac_1', conv1)
conv2, w2 = conv2d(conv1, output_dim=64, name='dis_conv2')
tf.add_to_collection('weight_2', w2)
conv2 = lrelu(batch_normal(conv2, scope='dis_bn1'))
tf.add_to_collection('ac_2', conv2)
conv2 = tf.reshape(conv2, [self.batch_size, -1])
conv2 = tf.concat([conv2, y], 1)
f1 = lrelu(batch_normal(fully_connect(conv2, output_size=1024, scope='dis_fully1'), scope='dis_bn2', reuse=reuse))
f1 = tf.concat([f1, y], 1)
out = fully_connect(f1, output_size=1, scope='dis_fully2', initializer = xavier_initializer())
return tf.nn.sigmoid(out), out