forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THCSortUtils.cuh
229 lines (193 loc) · 7.11 KB
/
THCSortUtils.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#ifndef THC_SORT_UTILS_INC
#define THC_SORT_UTILS_INC
#include <THC/THCReduceApplyUtils.cuh>
#include <THC/THCTensorTypeUtils.cuh>
#include <THC/THCNumerics.cuh>
#include <c10/macros/Macros.h>
// Collection of kernel sort routines
template <typename T, bool handleNaN = false>
struct LTComp {
__device__ inline bool operator()(const T& a, const T& b) const {
return (handleNaN && THCNumerics<T>::isnan(b) && !THCNumerics<T>::isnan(a)) || THCNumerics<T>::lt(a, b);
}
};
template <typename T, bool handleNaN = false>
struct GTComp {
__device__ inline bool operator()(const T& a, const T& b) const {
return (handleNaN && THCNumerics<T>::isnan(a) && !THCNumerics<T>::isnan(b)) || THCNumerics<T>::gt(a, b);
}
};
template <typename T>
__device__ inline void swapVars(T& t1, T& t2) {
T tmp = t1;
t1 = t2;
t2 = tmp;
}
template <typename Comparator, typename K, typename V>
__device__ inline void bitonicSwap(K& kA, V& vA, bool& validA,
K& kB, V& vB, bool& validB,
bool dir,
const Comparator& comp) {
// Invalid entries always sort to the end
bool swap = (comp(kA, kB) && validA) || !validB;
if (swap == dir) {
swapVars(kA, kB);
swapVars(vA, vB);
swapVars(validA, validB);
}
};
template <typename Comparator, typename K>
__device__ inline void bitonicSwapKeys(K& kA, bool& validA,
K& kB, bool& validB,
bool dir,
const Comparator& comp) {
bool swap = (comp(kA, kB) && validA) || !validB;
if (swap == dir) {
swapVars(kA, kB);
swapVars(validA, validB);
}
}
template <typename Comparator, typename K, typename V,
typename IndexType, int Power2SortSize>
__device__ inline void bitonicSort(K keys[Power2SortSize],
V values[Power2SortSize],
bool valid[Power2SortSize],
const Comparator& comp) {
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int size = 2; size < Power2SortSize; size *= 2) {
bool flag = ((threadIdx.x & (size / 2)) != 0);
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int stride = size / 2; stride > 0; stride /= 2) {
__syncthreads();
unsigned int pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
bitonicSwap<Comparator, K, V>(
keys[pos], values[pos], valid[pos],
keys[pos + stride], values[pos + stride], valid[pos + stride],
flag, comp);
}
}
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int stride = Power2SortSize / 2; stride > 0; stride /= 2) {
__syncthreads();
unsigned int pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
bitonicSwap<Comparator, K, V>(
keys[pos], values[pos], valid[pos],
keys[pos + stride], values[pos + stride], valid[pos + stride],
false, comp);
}
__syncthreads();
}
template <typename Comparator, typename K,
typename IndexType, int Power2SortSize>
__device__ inline void bitonicSortKeys(K keys[Power2SortSize],
bool valid[Power2SortSize],
const Comparator& comp) {
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int size = 2; size < Power2SortSize; size *= 2) {
bool flag = ((threadIdx.x & (size / 2)) != 0);
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int stride = size / 2; stride > 0; stride /= 2) {
__syncthreads();
unsigned int pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
bitonicSwapKeys<Comparator, K>(
keys[pos], valid[pos],
keys[pos + stride], valid[pos + stride],
flag, comp);
}
}
#ifndef __HIP_PLATFORM_HCC__
#pragma unroll
#endif
for (unsigned int stride = Power2SortSize / 2; stride > 0; stride /= 2) {
__syncthreads();
unsigned int pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
bitonicSwapKeys<Comparator, K>(
keys[pos], valid[pos],
keys[pos + stride], valid[pos + stride],
false, comp);
}
__syncthreads();
}
// Sorts (key, value) pairs (in different tensors) in-place; i.e.,
// modifies the input `keys` and `values`
template <typename K, typename V,
int KeyDims, int ValueDims,
typename Comparator, typename IndexType, int Power2SortSize>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void
bitonicSortKVInPlace(TensorInfo<K, IndexType> keys,
IndexType keySlices,
IndexType keySliceSize,
IndexType keySliceStride,
TensorInfo<V, IndexType> values,
IndexType valueSliceStride,
Comparator comp) {
// Find the slice of the tensor that we are sorting
const IndexType linearIndex = getLinearBlockId<IndexType>();
// Tiling the slices could have us be out of bounds, if there are a
// lot of slices to sort
if (linearIndex >= keySlices) {
return;
}
__shared__ K sharedKeys[Power2SortSize];
__shared__ V sharedValues[Power2SortSize];
__shared__ bool sharedValid[Power2SortSize];
const IndexType keyStartOffset =
IndexToOffset<K, IndexType, KeyDims>::get(linearIndex, keys);
const IndexType valueStartOffset =
IndexToOffset<V, IndexType, ValueDims>::get(linearIndex, values);
// If the sort size is 1, the data is already sorted
if (Power2SortSize == 1) {
return;
} else {
// Otherwise, each thread is responsible for loading and storing 2
// elements. The sort size is guaranteed to be >= 2
const int elem1 = threadIdx.x;
const int elem2 = threadIdx.x + (Power2SortSize / 2);
bool valid1 = (elem1 < keySliceSize);
K k1 = valid1 ?
keys.data[keyStartOffset + elem1 * keySliceStride] : ScalarConvert<int, K>::to(0);
V v1 = valid1 ?
values.data[valueStartOffset + elem1 * valueSliceStride] : ScalarConvert<int, V>::to(0);
sharedKeys[elem1] = k1;
sharedValues[elem1] = v1;
sharedValid[elem1] = valid1;
bool valid2 = (elem2 < keySliceSize);
K k2 = valid2 ?
keys.data[keyStartOffset + elem2 * keySliceStride] : ScalarConvert<int, K>::to(0);
V v2 = valid2 ?
values.data[valueStartOffset + elem2 * valueSliceStride] : ScalarConvert<int, V>::to(0);
sharedKeys[elem2] = k2;
sharedValues[elem2] = v2;
sharedValid[elem2] = valid2;
// Sort!
bitonicSort<Comparator, K, V, IndexType, Power2SortSize>(
sharedKeys, sharedValues, sharedValid, comp);
// elem1 and elem2 values might be out-of-range, if the data size we are
// sorting is smaller than half the power2 size
if (valid1) {
keys.data[keyStartOffset + elem1 * keySliceStride] =
sharedKeys[elem1];
values.data[valueStartOffset + elem1 * valueSliceStride] =
sharedValues[elem1];
}
if (valid2) {
keys.data[keyStartOffset + elem2 * keySliceStride] =
sharedKeys[elem2];
values.data[valueStartOffset + elem2 * valueSliceStride] =
sharedValues[elem2];
}
}
}
uint64_t nextHighestPowerOf2(uint64_t n);
#endif // THC_SORT_UTILS_INC