forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNN_miopen.cpp
900 lines (767 loc) · 35.2 KB
/
RNN_miopen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
#include <ATen/native/RNN.h>
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/MatrixRef.h>
#include <ATen/NativeFunctions.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAConfig.h>
#include <c10/util/Exception.h>
#if !AT_ROCM_ENABLED()
namespace at { namespace native {
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> miopen_rnn(
const Tensor& input_r, TensorList weight, int64_t weight_stride0,
const Tensor& hx, const Tensor& cx,
int64_t fn_mode, int64_t fn_hidden_size, int64_t fn_num_layers,
bool batch_first, double fn_dropout, bool fn_train, bool fn_bidirectional,
IntArrayRef fn_batch_sizes, const Tensor& fn_dropout_state
) {
AT_ERROR("miopen_rnn : ATen not compiled with MIOpen support.");
}
std::tuple<Tensor, Tensor, Tensor, std::vector<Tensor>> miopen_rnn_backward(
const Tensor& input, TensorList weight, int64_t weight_stride0, const Tensor& weight_buf, const Tensor& hx, const Tensor& cx,
const Tensor& output, const Tensor& grad_output_r, const Tensor& grad_hy_r,
const Tensor& grad_cy_r, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first,
double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const Tensor& dropout_state,
const Tensor& reserve, std::array<bool, 4> output_mask
) {
AT_ERROR("miopen_rnn_backward: ATen not compiled with MIOpen support.");
}
}} //namespace at::native
#else // AT_ROCM_ENABLED()
#include <aten/src/THH/THH.h>
#include <ATen/miopen/miopen-wrapper.h>
#include <ATen/miopen/Descriptors.h>
#include <ATen/miopen/Types.h>
#include <ATen/miopen/Utils.h>
#include <ATen/TensorUtils.h>
#include <functional>
#include <iterator>
#include <sstream>
#include <algorithm>
#include <memory>
#include <mutex>
#include <stdint.h>
#include <unordered_map>
namespace at { namespace native {
//RNNDescriptor.
struct RNNDescriptorParams {
int64_t hidden_size;
int64_t num_layers;
miopenRNNDirectionMode_t direction;
miopenRNNMode_t rnn_mode;
miopenDataType_t datatype;
miopenRNNAlgo_t algo = miopenRNNdefault;
miopenRNNInputMode_t input_mode = miopenRNNlinear;
miopenRNNBiasMode_t bias_mode = miopenRNNNoBias;
int64_t num_directions() const {
return (direction == miopenRNNbidirection) ? 2 : 1;
}
void set_bidirectional(bool fn_bidirectional) {
direction = fn_bidirectional ? miopenRNNbidirection : miopenRNNunidirection;
}
void set_algo(miopenRNNAlgo_t algo) {
this->algo = algo;
}
void set_mode(int64_t fn_mode) {
switch (fn_mode) {
case 0:
rnn_mode = miopenRNNRELU;
break;
case 1:
rnn_mode = miopenRNNTANH;
break;
case 2:
rnn_mode = miopenLSTM;
break;
case 3:
rnn_mode = miopenGRU;
break;
default:
{
std::ostringstream oss;
oss << "unrecognized miopen RNN mode " << fn_mode;
AT_ERROR(oss.str());
}
}
}
void set(int64_t mode, int64_t hidden_size, int64_t num_layers, bool bidirectional, miopenDataType_t datatype, miopenRNNBiasMode_t bias_mode) {
this->set_mode(mode);
this->hidden_size = hidden_size;
this->num_layers = num_layers;
this->set_bidirectional(bidirectional);
this->datatype = datatype;
this->bias_mode = bias_mode;
}
RNNDescriptor descriptor() const {
RNNDescriptor rnn_desc;
rnn_desc.set(hidden_size, num_layers, input_mode, direction, rnn_mode, bias_mode, algo, datatype);
return rnn_desc;
}
};
//TensorDescriptor list.
std::vector<TensorDescriptor> rnn_descriptor_sequence(const Tensor& tensor, IntArrayRef batch_sizes) {
std::vector<TensorDescriptor> descriptors(batch_sizes.size());
size_t i =0;
auto batch_tensor_size = tensor.sizes().vec();
for (auto batch_size : batch_sizes) {
batch_tensor_size[0] = batch_size;
descriptors[i].set(getMiopenDataType(tensor), batch_tensor_size, tensor.strides(), 3);
i++;
}
return descriptors;
}
std::vector<TensorDescriptor> rnn_descriptor(const Tensor& tensor, int64_t N) {
std::vector<TensorDescriptor> descriptors(N);
for (int64_t i = 0; i < N ; i++) {
descriptors[i].set(tensor, 5);
}
return descriptors;
}
struct TensorDescriptorListParams {
IntArrayRef batch_sizes;
int64_t seq_length;
int64_t mini_batch;
int64_t input_size;
int64_t batch_sizes_sum;
bool is_input_packed() const {
return batch_sizes.size() != 0;
}
void set(IntArrayRef input_sizes, IntArrayRef batch_sizes_, bool batch_first) {
batch_sizes = batch_sizes_;
if (is_input_packed()) {
seq_length = batch_sizes.size();
mini_batch = batch_sizes[0];
batch_sizes_sum = input_sizes[0];
input_size = input_sizes[1];
} else {
if (batch_first) {
seq_length = input_sizes[1];
mini_batch = input_sizes[0];
} else {
seq_length = input_sizes[0];
mini_batch = input_sizes[1];
}
input_size = input_sizes[2];
batch_sizes_sum = -1;
}
}
std::vector<TensorDescriptor> descriptors(Tensor x) const {
auto is_input_packed = batch_sizes.size() != 0;
if (is_input_packed) {
return rnn_descriptor_sequence(x, batch_sizes);
} else {
return rnn_descriptor(x[0], seq_length);
}
}
};
struct RNNParams {
RNNDescriptorParams rnn;
TensorDescriptorListParams tensors;
};
struct RNNDescriptors {
RNNDescriptor rnn_desc;
std::vector<TensorDescriptor> x_descs;
std::vector<TensorDescriptor> y_descs;
TensorDescriptor hx_desc;
TensorDescriptor hy_desc;
TensorDescriptor cx_desc;
TensorDescriptor cy_desc;
RNNDescriptors(const RNNParams& fn, miopenHandle_t handle, Tensor x, Tensor y, Tensor hx, Tensor cx) {
rnn_desc = fn.rnn.descriptor();
x_descs = fn.tensors.descriptors(x);
y_descs = fn.tensors.descriptors(y);
hx_desc.set(hx, 5);
hy_desc.set(hx, 5);
cx_desc.set(hx, 5);
cy_desc.set(hx, 5);
}
std::vector<miopenTensorDescriptor_t> get_descs(const std::vector<TensorDescriptor>& descs) {
std::vector<miopenTensorDescriptor_t> r;
r.reserve(descs.size());
for (auto& desc : descs) {
r.emplace_back(desc.desc());
}
return r;
}
std::vector<miopenTensorDescriptor_t> get_x_descs() {
return get_descs(x_descs);
}
std::vector<miopenTensorDescriptor_t> get_y_descs() {
return get_descs(y_descs);
}
};
Tensor permute_wei_for_miopen(Tensor wei, int64_t mode)
{
if (mode < 2)
return wei;
Tensor permuted_wei;
if(mode == 2) { // LSTM
auto sliced_tensor = wei.chunk(4, 0);
permuted_wei = at::cat({sliced_tensor[0], sliced_tensor[1], sliced_tensor[3], sliced_tensor[2]});
}
else if(mode == 3) { // GRU
auto sliced_tensor = wei.chunk(3, 0);
permuted_wei = at::cat({sliced_tensor[1], sliced_tensor[0], sliced_tensor[2]});
}
return permuted_wei;
}
void _viewOrCopyParams(MatrixRef<Tensor> params_from, MatrixRef<Tensor> params_to, bool copy) {
AT_ASSERTM(params_from.size(0) == params_to.size(0), "number of layers mismatch");
for (size_t i = 0; i < params_from.size(0); i++) {
auto layer_params_from = params_from[i];
auto layer_params_to = params_to[i];
// NOTE: these lists have all weights before all biases, so if the layer
// doesn't use biases, iteration will terminate once layer_params_from ends
// and ignore them.
for (auto a = layer_params_from.begin(), b = layer_params_to.begin();
a != layer_params_from.end() && b != layer_params_to.end();
++a, ++b) {
auto param_from = *a, param_to = *b;
AT_ASSERTM(param_from.type() == param_to.type(), "parameter types mismatch");
if (copy) {
param_to.copy_(param_from.view_as(param_to));
} else {
param_from.resize_as_(param_to);
}
}
}
}
void _copyParams_and_permute(MatrixRef<Tensor> params_from, MatrixRef<Tensor> params_to, int64_t mode) {
AT_ASSERTM(params_from.size(0) == params_to.size(0), "number of layers mismatch");
for (size_t i = 0; i < params_from.size(0); i++) {
auto layer_params_from = params_from[i];
auto layer_params_to = params_to[i];
for (auto a = layer_params_from.begin(), b = layer_params_to.begin();
a != layer_params_from.end() && b != layer_params_to.end();
++a, ++b) {
auto param_from = *a, param_to = *b;
AT_ASSERTM(param_from.type() == param_to.type(), "parameter types mismatch");
auto tmp = permute_wei_for_miopen(param_from, mode);
param_to.copy_(tmp.view_as(param_to));
}
}
}
void _copyParams(MatrixRef<Tensor> params_from, MatrixRef<Tensor> params_to) {
_viewOrCopyParams(params_from, params_to, true);
}
void _viewParams(MatrixRef<Tensor> params_from, MatrixRef<Tensor> params_to) {
_viewOrCopyParams(params_from, params_to, false);
}
int64_t get_num_weights(miopenHandle_t handle, const RNNDescriptor& rnn_desc,
const TensorDescriptor& x_desc, miopenDataType_t datatype)
{
size_t weight_size;
MIOPEN_CHECK(miopenGetRNNParamsSize(handle, rnn_desc.desc(), x_desc.desc(), &weight_size, datatype));
auto element_size = dataSize(datatype);
AT_ASSERTM(weight_size % element_size == 0, "miopenGetRNNParamsSize returned nonsensical weight_size.");
return weight_size / element_size;
}
int64_t _num_linear_layers(miopenRNNMode_t mode) {
switch(mode) {
case miopenLSTM:
return 8;
case miopenGRU:
return 6;
case miopenRNNRELU:
return 2;
case miopenRNNTANH:
return 2;
default:
AT_ERROR("Unknown miopen RNN mode : ", mode);
}
}
std::pair<std::vector<Tensor>, size_t> get_parameters(miopenHandle_t handle, const RNNDescriptorParams& rnn,
const RNNDescriptor& rnn_desc, const TensorDescriptor& x_desc, const FilterDescriptor& w_desc,
const Tensor& weight_buf)
{
std::vector<Tensor> params;
int64_t num_linear_layers = _num_linear_layers(rnn.rnn_mode);
int64_t num_layers = rnn.num_directions() * rnn.num_layers;
size_t cur_offset = 0;
size_t global_layer_params_count = 0;
auto elem_size = dataSize(getMiopenDataType(weight_buf));
auto bias_mode = rnn.bias_mode;
for (int64_t layer = 0; layer < num_layers; layer++) {
size_t layer_params_count = 0;
// Get layer params
for (int64_t linear_id = 0; linear_id < num_linear_layers; linear_id++) {
FilterDescriptor lin_layer_mat_desc;
size_t offset;
MIOPEN_CHECK(miopenGetRNNLayerParamOffset(
rnn_desc.desc(),
layer,
x_desc.desc(),
linear_id,
lin_layer_mat_desc.mut_desc(),
&offset));
size_t param_size;
MIOPEN_CHECK(miopenGetRNNLayerParamSize(
handle,
rnn_desc.desc(),
layer,
x_desc.desc(),
linear_id,
¶m_size));
param_size /= elem_size;
if(linear_id == 0 || linear_id == num_linear_layers / 2) {
std::initializer_list<int64_t> size = { param_size * num_linear_layers / 2, 1};
Tensor param = at::empty({0}, weight_buf.options()).set_(weight_buf.storage(), offset, size);
params.emplace_back(std::move(param));
layer_params_count++;
} else {
AT_ASSERTM(cur_offset == offset, "cur_offset = ", cur_offset, " ; offset = ", offset);
}
cur_offset = offset + param_size;
}
// Get bias params
if (bias_mode == miopenRNNwithBias) {
for (int64_t linear_id = 0; linear_id < num_linear_layers; linear_id++) {
FilterDescriptor lin_layer_mat_desc;
size_t offset;
MIOPEN_CHECK(miopenGetRNNLayerBiasOffset(
rnn_desc.desc(),
layer,
x_desc.desc(),
linear_id,
lin_layer_mat_desc.mut_desc(),
&offset));
size_t bias_size;
MIOPEN_CHECK(miopenGetRNNLayerBiasSize(
handle,
rnn_desc.desc(),
layer,
linear_id,
&bias_size));
bias_size /= elem_size;
if(linear_id == 0 || linear_id == num_linear_layers / 2) {
std::initializer_list<int64_t> size = { bias_size * num_linear_layers / 2, 1};
Tensor param = at::empty({0}, weight_buf.options()).set_(weight_buf.storage(), offset, size);
params.emplace_back(std::move(param));
layer_params_count++;
} else {
AT_ASSERTM(cur_offset == offset, "cur_offset = ", cur_offset, " ; offset = ", offset);
}
cur_offset = offset + bias_size;
}
}
if (layer == 0) {
global_layer_params_count = layer_params_count;
} else {
AT_ASSERTM(global_layer_params_count == layer_params_count,
"global_layer_params_count = ", global_layer_params_count,
"; layer_params_count = ", layer_params_count);
}
} // layer
return std::make_pair(params, global_layer_params_count);
}
std::vector<int64_t> _input_size(const TensorDescriptorListParams& tensors) {
if (tensors.is_input_packed()) {
return {tensors.batch_sizes_sum, tensors.input_size};
} else {
return {tensors.seq_length, tensors.mini_batch, tensors.input_size};
}
}
std::vector<int64_t> _hidden_size(const RNNDescriptorParams& rnn, const TensorDescriptorListParams& tensors) {
return {rnn.num_layers * rnn.num_directions(), tensors.mini_batch, rnn.hidden_size};
}
std::vector<int64_t> _output_size(const RNNDescriptorParams& rnn, const TensorDescriptorListParams& tensors) {
if (tensors.is_input_packed()) {
return {tensors.batch_sizes_sum, rnn.hidden_size * rnn.num_directions()};
} else {
return {tensors.seq_length, tensors.mini_batch, rnn.hidden_size * rnn.num_directions()};
}
}
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor> miopen_rnn(
const Tensor& input_r, TensorList weight, int64_t weight_stride0,
const Tensor& hx, const Tensor& cx,
int64_t fn_mode, int64_t fn_hidden_size, int64_t fn_num_layers,
bool batch_first, double fn_dropout, bool fn_train, bool fn_bidirectional,
IntArrayRef fn_batch_sizes, const Tensor& fn_dropout_state
) {
check_attributes(input_r, weight, {hx, cx});
auto input = input_r;
RNNParams fn;
auto datatype = getMiopenDataType(input);
miopenRNNBiasMode_t bias_mode = (weight_stride0 == 4) ? miopenRNNwithBias : miopenRNNNoBias;
fn.rnn.set(fn_mode, fn_hidden_size, fn_num_layers, fn_bidirectional, datatype, bias_mode);
fn.tensors.set(input.sizes(), fn_batch_sizes, batch_first);
if (fn.rnn.rnn_mode != miopenLSTM) {
TORCH_CHECK(!cx.defined(), "miopen_rnn: illegal defined cx for non-LSTM RNN.");
}
auto is_input_packed = fn.tensors.batch_sizes.size() != 0;
if (batch_first && !is_input_packed) {
input = input.transpose(0, 1);
}
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
auto output_size = _output_size(fn.rnn, fn.tensors);
TORCH_CHECK(hx.is_contiguous(), "miopen_rnn : hx is not contiguous.");
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "miopen_rnn : cx is not contiguous.");
auto x = input.contiguous();
auto output = at::empty(output_size, input.options());
auto hy = at::empty(hidden_size, hx.options());
Tensor cy;
if (cx.defined()) {
cy = at::empty(hidden_size, cx.options());
} else {
cy = at::empty({0}, hx.options());
}
auto y = output;
auto handle = getMiopenHandle();
miopenRNNAlgo_t algo = miopenRNNdefault;
fn.rnn.set_algo(algo);
RNNDescriptors descs(fn, handle, x, y, hx, cx);
FilterDescriptor w_desc;
auto num_weights = get_num_weights(handle, descs.rnn_desc, descs.x_descs[0], datatype);
auto weight_buf = at::empty(num_weights, x.options());
w_desc.set(weight_buf, 3);
weight_buf.zero_();
std::vector<Tensor> params;
size_t params_stride0;
std::tie(params, params_stride0) = get_parameters(handle, fn.rnn, descs.rnn_desc, descs.x_descs[0], w_desc, weight_buf);
if (fn_mode < 2)
_copyParams(MatrixRef<Tensor>{weight, static_cast<size_t>(weight_stride0)},
MatrixRef<Tensor>{params, params_stride0});
else
_copyParams_and_permute(MatrixRef<Tensor>{weight, static_cast<size_t>(weight_stride0)},
MatrixRef<Tensor>{params, params_stride0}, fn_mode);
TORCH_CHECK(!cx.defined() || cx.sizes().equals(hidden_size), "Expected cell size ", IntArrayRef{hidden_size}, ", got", cx.sizes());
size_t workspace_size;
auto x_descs_arr = descs.get_x_descs();
auto y_descs_arr = descs.get_y_descs();
//Allocate workspace size.
MIOPEN_CHECK(miopenGetRNNWorkspaceSize(handle, descs.rnn_desc.desc(), fn.tensors.seq_length, x_descs_arr.data(), &workspace_size));
auto workspace = at::empty(workspace_size, input.options().dtype(kByte));
//Train or inference.
Tensor reserve;
if (fn_train) { //Train.
size_t reserver_size;
MIOPEN_CHECK(miopenGetRNNTrainingReserveSize(handle, descs.rnn_desc.desc(), fn.tensors.seq_length, x_descs_arr.data(), &reserver_size));
reserve = at::empty(reserver_size, input.options().dtype(kByte));
setMIOpenStreamToCurrent();
MIOPEN_CHECK(miopenRNNForwardTraining(handle, descs.rnn_desc.desc(), fn.tensors.seq_length,
x_descs_arr.data(), x.data_ptr(),
descs.hx_desc.desc(), hx.data_ptr(),
descs.cx_desc.desc(), cx.defined() ? cx.data_ptr() : nullptr,
w_desc.desc(), weight_buf.data_ptr(),
y_descs_arr.data(), y.data_ptr(),
descs.hy_desc.desc(), hy.data_ptr(),
descs.cy_desc.desc(), cy.defined() ? cy.data_ptr() : nullptr,
workspace.data_ptr(), workspace_size, reserve.data_ptr(), reserver_size ));
} else { //Inference.
reserve = at::empty({0}, input.options().dtype(kByte));
setMIOpenStreamToCurrent();
MIOPEN_CHECK(miopenRNNForwardInference(handle, descs.rnn_desc.desc(), fn.tensors.seq_length,
x_descs_arr.data(), x.data_ptr(),
descs.hx_desc.desc(), hx.data_ptr(),
descs.cx_desc.desc(), cx.defined() ? cx.data_ptr() : nullptr,
w_desc.desc(), weight_buf.data_ptr(),
y_descs_arr.data(), y.data_ptr(),
descs.hy_desc.desc(), hy.data_ptr(),
descs.cy_desc.desc(), cy.defined() ? cy.data_ptr() : nullptr,
workspace.data_ptr(), workspace_size));
}
if (batch_first && !is_input_packed) {
output.transpose_(0, 1);
}
return std::make_tuple(output, hy, cy, reserve, weight_buf);
}
std::tuple<Tensor, Tensor, Tensor, Tensor> miopen_rnn_backward_input(
const Tensor& input_r, const Tensor& weight_buf, const Tensor& hx, const Tensor& cx,
const Tensor& output_r, const Tensor& grad_output_r, const Tensor& grad_hy,
const Tensor& grad_cy,
int64_t fn_mode, int64_t fn_hidden_size,
int64_t fn_num_layers, bool batch_first, double fn_dropout,
bool fn_train, bool fn_bidirectional, IntArrayRef fn_batch_sizes,
const Tensor& fn_dropout_state, const Tensor& fn_reserve,
std::array<bool, 3> output_mask
) {
auto input = input_r;
auto grad_output = grad_output_r;
auto output = output_r;
RNNParams fn;
auto datatype = getMiopenDataType(input);
fn.rnn.set(fn_mode, fn_hidden_size, fn_num_layers, fn_bidirectional, datatype, miopenRNNwithBias);
fn.tensors.set(input.sizes(), fn_batch_sizes, batch_first);
auto handle = getMiopenHandle();
if(fn.rnn.rnn_mode != miopenLSTM) {
TORCH_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
}
auto is_input_packed = fn_batch_sizes.size() != 0;
if (batch_first && !is_input_packed) {
input = input.transpose(0, 1);
grad_output = grad_output.transpose(0, 1);
output = output.transpose(0, 1);
}
auto input_size = _input_size(fn.tensors);
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
auto output_size = _output_size(fn.rnn, fn.tensors);
TORCH_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
auto x = input.contiguous();
auto dy = grad_output.contiguous();
auto y = output;
auto w = weight_buf;
auto dx = at::empty(input.sizes(), input.options());
auto dhy = grad_hy.contiguous().view(hidden_size);
auto dcy = grad_cy.defined() ? grad_cy.contiguous().view(hidden_size) : Tensor();
auto dhx = at::empty(hidden_size, hx.options());
AT_ASSERTM(cx.defined() || !output_mask[2], "illegally required grad of cx for non-LSTM RNN");
auto dcx = cx.defined() ? at::empty(hidden_size, cx.options()) : Tensor();
TORCH_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
TORCH_CHECK(input.sizes().equals(input_size),
"Expected input size ", IntArrayRef{input_size}, ", got ", input.sizes());
TORCH_CHECK(output.sizes().equals(output_size),
"Expected output size ", IntArrayRef{output_size}, ", got ", output.sizes());
TORCH_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
"Expected hidden size ", IntArrayRef{hidden_size}, ", got ", hx.sizes());
TORCH_CHECK(!cx.defined() || cx.sizes().equals(hidden_size),
"Expected cell size ", IntArrayRef{hidden_size}, ", got ", cx.sizes());
TORCH_CHECK(!dhy.defined() || dhy.sizes().equals(hidden_size),
"Expected d_hidden size ", IntArrayRef{hidden_size}, ", got ", dhy.sizes());
TORCH_CHECK(!dcy.defined() || dcy.sizes().equals(hidden_size),
"Expected d_cell size ", IntArrayRef{hidden_size}, ", got ", dcy.sizes());
TORCH_CHECK(dhy.is_cuda() && dy.is_cuda() && (!dcy.defined() || dcy.is_cuda()),
"Gradients aren't HIP tensors");
miopenRNNAlgo_t algo = miopenRNNdefault;
fn.rnn.set_algo(algo);
RNNDescriptors descs(fn, handle, x, y, hx, cx);
FilterDescriptor w_desc;
w_desc.set(weight_buf, 3);
size_t workspace_size;
auto x_descs_arr = descs.get_x_descs();
auto y_descs_arr = descs.get_y_descs();
MIOPEN_CHECK(miopenGetRNNWorkspaceSize(
handle,
descs.rnn_desc.desc(),
fn.tensors.seq_length,
x_descs_arr.data(),
&workspace_size
));
auto workspace = at::empty(workspace_size, input.options().dtype(kByte));
setMIOpenStreamToCurrent();
MIOPEN_CHECK(miopenRNNBackwardData(
handle,
descs.rnn_desc.desc(),
fn.tensors.seq_length,
y_descs_arr.data(), y.data_ptr(),
y_descs_arr.data(), dy.data_ptr(),
descs.hy_desc.desc(), dhy.data_ptr(),
descs.cy_desc.desc(), cx.defined() ? dcy.data_ptr() : nullptr,
w_desc.desc(), w.data_ptr(),
descs.hx_desc.desc(), hx.data_ptr(),
descs.cx_desc.desc(), cx.defined() ? cx.data_ptr() : nullptr,
x_descs_arr.data(), dx.data_ptr(),
descs.hx_desc.desc(), dhx.data_ptr(),
descs.cx_desc.desc(), cx.defined() ? dcx.data_ptr() : nullptr,
workspace.data_ptr(), workspace.size(0),
fn_reserve.data_ptr(), fn_reserve.size(0)
));
if(batch_first && !is_input_packed) {
dx = dx.transpose_(0, 1);
}
return std::make_tuple(dx, dhx, dcx, workspace);
}
std::vector<Tensor> miopen_rnn_backward_weight(
const Tensor& input_r, TensorList weight_arr, int64_t weight_stride0,
const Tensor& weight_buf, const Tensor& hx, const Tensor& cx,
const Tensor& output_r,
int64_t fn_mode, int64_t fn_hidden_size,
int64_t fn_num_layers, bool batch_first, double fn_dropout,
bool fn_train, bool fn_bidirectional, IntArrayRef fn_batch_sizes,
const Tensor& fn_dropout_state, const Tensor& fn_reserve, const Tensor& fn_workspace
) {
MatrixRef<Tensor> weight{ weight_arr, static_cast<size_t>(weight_stride0) };
auto input = input_r;
auto output = output_r;
RNNParams fn;
auto datatype = getMiopenDataType(input);
miopenRNNBiasMode_t bias_mode = (weight_stride0 == 4) ? miopenRNNwithBias : miopenRNNNoBias;
fn.rnn.set(fn_mode, fn_hidden_size, fn_num_layers, fn_bidirectional, datatype, bias_mode);
fn.tensors.set(input.sizes(), fn_batch_sizes, batch_first);
auto handle = getMiopenHandle();
if (fn.rnn.rnn_mode != miopenLSTM) {
TORCH_CHECK(!cx.defined(), "rnn: illegal defined cx for non-LSTM RNN");
}
auto is_input_packed = fn_batch_sizes.size() != 0;
if (batch_first && !is_input_packed) {
input = input.transpose(0, 1);
output = output.transpose(0, 1);
}
auto input_size = _input_size(fn.tensors);
auto hidden_size = _hidden_size(fn.rnn, fn.tensors);
TORCH_CHECK(fn_train, "miopen RNN backward can only be called in training mode");
TORCH_CHECK(input.sizes().equals(input_size),
"Expected input size ", IntArrayRef{input_size}, ", got ", input.sizes());
TORCH_CHECK(!hx.defined() || hx.sizes().equals(hidden_size),
"Expected hidden size ", IntArrayRef{hidden_size}, ", got ", hx.sizes());
TORCH_CHECK(hx.is_contiguous(), "rnn: hx is not contiguous");
TORCH_CHECK(!cx.defined() || cx.is_contiguous(), "rnn: cx is not contiguous");
auto x = input.contiguous();
const auto& y = output;
auto dw = at::zeros(weight_buf.sizes(), weight_buf.options());
miopenRNNAlgo_t algo = miopenRNNdefault;
fn.rnn.set_algo(algo);
RNNDescriptors descs(fn, handle, x, y, hx, cx);
FilterDescriptor w_desc;
w_desc.set(weight_buf, 3);
auto x_descs_arr = descs.get_x_descs();
auto y_descs_arr = descs.get_y_descs();
setMIOpenStreamToCurrent();
MIOPEN_CHECK(miopenRNNBackwardWeights(
handle,
descs.rnn_desc.desc(),
fn.tensors.seq_length,
x_descs_arr.data(), x.data_ptr(),
descs.hx_desc.desc(), hx.data_ptr(),
y_descs_arr.data(), y.data_ptr(),
w_desc.desc(), dw.data_ptr(),
fn_workspace.data_ptr(), fn_workspace.size(0),
fn_reserve.data_ptr(), fn_reserve.size(0)
));
std::vector<Tensor> grad_params_arr;
size_t grad_params_stride0;
std::tie(grad_params_arr, grad_params_stride0) = get_parameters(handle, fn.rnn, descs.rnn_desc, descs.x_descs[0], w_desc, dw);
if (grad_params_stride0 == static_cast<size_t>(weight_stride0)) {
_viewParams(MatrixRef<Tensor>{grad_params_arr, grad_params_stride0},
MatrixRef<Tensor>{weight_arr, static_cast<size_t>(weight_stride0)});
return grad_params_arr;
} else {
std::vector<Tensor> grad_weight_arr;
grad_weight_arr.reserve( weight.numel() );
for (const auto& w : weight_arr) {
grad_weight_arr.emplace_back(at::empty(w.sizes(), w.options()));
}
_copyParams(MatrixRef<Tensor>{grad_params_arr, grad_params_stride0},
MatrixRef<Tensor>{grad_weight_arr, static_cast<size_t>(weight_stride0)});
return grad_weight_arr;
}
}
std::tuple<Tensor, Tensor, Tensor, std::vector<Tensor>> miopen_rnn_backward(
const Tensor& input, TensorList weight, int64_t weight_stride0, const Tensor& weight_buf, const Tensor& hx, const Tensor& cx,
const Tensor& output, const Tensor& grad_output_r, const Tensor& grad_hy_r,
const Tensor& grad_cy_r, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first,
double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const Tensor& dropout_state,
const Tensor& reserve, std::array<bool, 4> output_mask
) {
if (!grad_output_r.defined() && !grad_hy_r.defined() && !grad_cy_r.defined()) {
return std::tuple<Tensor, Tensor, Tensor, std::vector<Tensor>>(Tensor(), Tensor(), Tensor(), std::vector<Tensor>(weight.size()));
}
auto grad_output = grad_output_r.defined() ? grad_output_r : at::zeros_like(output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto grad_hy = grad_hy_r.defined() ? grad_hy_r : at::zeros_like(hx, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto grad_cy = cx.defined() ? (grad_cy_r.defined() ? grad_cy_r : at::zeros_like(cx, LEGACY_CONTIGUOUS_MEMORY_FORMAT)) : grad_cy_r;
Tensor dx, dhx, dcx, ws;
std::tie(dx, dhx, dcx, ws) = at::native::miopen_rnn_backward_input(input, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, {output_mask[0], output_mask[1], output_mask[2]});
std::vector<Tensor> dw;
if (output_mask[3]) {
dw = at::native::miopen_rnn_backward_weight(input, weight, weight_stride0, weight_buf, hx, cx, output, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, ws);
if (mode > 1) {
for (int i = 0; i < dw.size(); i++) {
dw[i] = permute_wei_for_miopen(dw[i], mode);
}
}
}
return std::tuple<Tensor, Tensor, Tensor, std::vector<Tensor>>{dx, dhx, dcx, dw};
}
namespace {
std::tuple<Tensor, Tensor> unpack_hidden(const Tensor& hidden) {
return std::make_tuple(hidden, at::Tensor{});
}
std::tuple<Tensor, Tensor> unpack_hidden(const std::tuple<Tensor, Tensor>& hidden) {
return hidden;
}
template<typename hidden_type>
hidden_type pack_hidden(const Tensor& hx, const Tensor& cx) {
static_assert(std::is_same<hidden_type, void>::value, "pack_hidden not implemented for this type");
AT_ERROR("NOT IMPLEMENTED");
}
template<>
Tensor pack_hidden<Tensor>(const Tensor& hx, const Tensor& cx) {
AT_ASSERT(cx.numel() == 0);
return hx;
}
template<>
std::tuple<Tensor, Tensor> pack_hidden<std::tuple<Tensor, Tensor>>(const Tensor& hx, const Tensor& cx) {
return std::make_tuple(hx, cx);
}
template<typename hidden_type>
std::pair<Tensor, hidden_type> _miopen_impl(
const Tensor& input, const Tensor& _batch_sizes, const hidden_type& hidden,
TensorList params, bool has_biases, miopenRNNMode_t mode,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
Tensor hx, cx;
std::tie(hx, cx) = unpack_hidden(hidden);
int64_t hidden_size = hx.size(2);
TORCH_CHECK(_batch_sizes.dim() == 1, "batch_sizes tensor should be 1D");
IntArrayRef batch_sizes { _batch_sizes.data_ptr<int64_t>(), static_cast<size_t>(_batch_sizes.size(0)) };
Tensor dropout_state = at::empty({0}, input.options());
auto miopen_output = at::miopen_rnn(
input, params, has_biases ? 4 : 2,
hx, cx, static_cast<int>(mode), hidden_size, num_layers, /*batch_first=*/false,
dropout_p, train, bidirectional, batch_sizes, dropout_state);
return {std::get<0>(miopen_output),
pack_hidden<hidden_type>(std::get<1>(miopen_output), std::get<2>(miopen_output))};
}
template<typename hidden_type>
std::pair<Tensor, hidden_type> _miopen_impl(
const Tensor& input, const hidden_type& hidden,
TensorList params, bool has_biases, miopenRNNMode_t mode,
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) {
Tensor hx, cx;
std::tie(hx, cx) = unpack_hidden(hidden);
int64_t hidden_size = hx.size(2);
Tensor dropout_state = at::empty({0}, input.options());
auto miopen_output = at::miopen_rnn(
input, params, has_biases ? 4 : 2,
hx, cx, static_cast<int>(mode), hidden_size, num_layers, batch_first, dropout_p,
train, bidirectional, /*batch_sizes=*/{}, dropout_state);
return {std::get<0>(miopen_output),
pack_hidden<hidden_type>(std::get<1>(miopen_output), std::get<2>(miopen_output))};
}
#define ONE_HIDDEN_RNN(NAME, MODE) \
void NAME##_miopen(Tensor& output, Tensor& hy, \
const Tensor& input, const Tensor& hx, \
TensorList params, bool has_biases, \
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) { \
std::tie(output, hy) = _miopen_impl(input, hx, params, has_biases, \
MODE, num_layers, dropout_p, train, bidirectional, batch_first); \
} \
\
void NAME##_packed_miopen(Tensor& output, Tensor& hy, \
const Tensor& data, const Tensor& batch_sizes, const Tensor& hx, \
TensorList params, bool has_biases, \
int64_t num_layers, double dropout_p, bool train, bool bidirectional) { \
std::tie(output, hy) = _miopen_impl(data, batch_sizes, hx, params, \
has_biases, MODE, num_layers, dropout_p, train, bidirectional); \
} \
\
REGISTER_CUDA_DISPATCH(NAME##_miopen_stub, &NAME##_miopen); \
REGISTER_CUDA_DISPATCH(NAME##_packed_miopen_stub, &NAME##_packed_miopen);
ONE_HIDDEN_RNN(gru, miopenGRU)
ONE_HIDDEN_RNN(rnn_tanh, miopenRNNTANH)
ONE_HIDDEN_RNN(rnn_relu, miopenRNNRELU)
void lstm_miopen(Tensor& output, Tensor& hy, Tensor& cy,
const Tensor& input, TensorList hx,
TensorList params, bool has_biases,
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) {
auto result = _miopen_impl(input, std::make_tuple(hx[0], hx[1]), params, has_biases,
miopenLSTM, num_layers, dropout_p, train, bidirectional, batch_first);
output = result.first;
hy = std::get<0>(result.second);
cy = std::get<1>(result.second);
}
void lstm_packed_miopen(Tensor& output, Tensor& hy, Tensor& cy,
const Tensor& data, const Tensor& batch_sizes, TensorList hx,
TensorList params, bool has_biases,
int64_t num_layers, double dropout_p, bool train, bool bidirectional) {
auto result = _miopen_impl(data, batch_sizes, std::make_tuple(hx[0], hx[1]),
params, has_biases, miopenLSTM, num_layers, dropout_p, train, bidirectional);
output = result.first;
hy = std::get<0>(result.second);
cy = std::get<1>(result.second);
}
REGISTER_CUDA_DISPATCH(lstm_miopen_stub, &lstm_miopen);
REGISTER_CUDA_DISPATCH(lstm_packed_miopen_stub, &lstm_packed_miopen);
} // anonymous namepsace
}} //namespace native.
#endif