forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIm2Col.cpp
213 lines (186 loc) · 5.29 KB
/
Im2Col.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <ATen/ATen.h>
#include <ATen/LegacyTHFunctionsCPU.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/div_rtn.h>
#include <ATen/native/im2col.h>
#include <ATen/native/im2col_shape_check.h>
namespace at {
namespace native {
namespace {
static void im2col_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
TORCH_CHECK(
kernel_size.size() == 2,
"It is expected kernel_size equals to 2, but got size ",
kernel_size.size());
TORCH_CHECK(
dilation.size() == 2,
"It is expected dilation equals to 2, but got size ",
dilation.size());
TORCH_CHECK(
padding.size() == 2,
"It is expected padding equals to 2, but got size ",
padding.size());
TORCH_CHECK(
stride.size() == 2,
"It is expected stride equals to 2, but got size ",
stride.size());
int64_t kernel_height = kernel_size[0];
int64_t kernel_width = kernel_size[1];
int64_t dilation_height = dilation[0];
int64_t dilation_width = dilation[1];
int64_t pad_height = padding[0];
int64_t pad_width = padding[1];
int64_t stride_height = stride[0];
int64_t stride_width = stride[1];
im2col_shape_check(
input_,
Tensor(),
kernel_height,
kernel_width,
dilation_height,
dilation_width,
pad_height,
pad_width,
stride_height,
stride_width);
Tensor input = input_.contiguous();
bool batched_input = true;
if (input.dim() == 3) {
batched_input = false;
input.resize_({1, input.size(0), input.size(1), input.size(2)});
}
int64_t batch_size = input.size(0);
int64_t n_input_plane = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = (input_height + 2 * pad_height -
(dilation_height * (kernel_height - 1) + 1)) /
stride_height +
1;
int64_t output_width = (input_width + 2 * pad_width -
(dilation_width * (kernel_width - 1) + 1)) /
stride_width +
1;
int64_t n_output_plane = n_input_plane * kernel_width * kernel_height;
int64_t output_length = output_height * output_width;
output.resize_({batch_size, n_output_plane, output_length});
output.zero_();
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(kHalf,
input.scalar_type(), "im2col_out_cpu", [&] {
Tensor input_n;
Tensor output_n;
for (int64_t elt = 0; elt < batch_size; elt++) {
input_n = input.select(0, elt);
output_n = output.select(0, elt);
im2col<scalar_t>(
input_n.data_ptr<scalar_t>(),
n_input_plane,
input_height,
input_width,
output_height,
output_width,
kernel_height,
kernel_width,
pad_height,
pad_width,
stride_height,
stride_width,
dilation_height,
dilation_width,
output_n.data_ptr<scalar_t>());
}
if (!batched_input) {
output.resize_({n_output_plane, output_length});
}
});
}
static void im2col_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef input_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
TORCH_CHECK(
input_size.size() == 2,
"It is expected input_size equals to 2, but got size ",
input_size.size());
// col2im_out_cpu checks size of kernel_size, dilation, padding and stride
col2im_out_cpu(
grad_input,
grad_output,
input_size,
kernel_size,
dilation,
padding,
stride);
}
} // namespace
Tensor& im2col_out_cpu(
Tensor& output,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
im2col_out_cpu_template(
output, input, kernel_size, dilation, padding, stride);
return output;
}
Tensor im2col_cpu(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
Tensor output = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
im2col_out_cpu_template(
output, input, kernel_size, dilation, padding, stride);
return output;
}
Tensor& im2col_backward_out_cpu(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef input_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
im2col_backward_out_cpu_template(
grad_input,
grad_output,
input_size,
kernel_size,
dilation,
padding,
stride);
return grad_input;
}
Tensor im2col_backward_cpu(
const Tensor& grad_output,
IntArrayRef input_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
Tensor grad_input = at::empty_like(grad_output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
im2col_backward_out_cpu_template(
grad_input,
grad_output,
input_size,
kernel_size,
dilation,
padding,
stride);
return grad_input;
}
} // namespace native
} // namespace at