forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlas.cpp
158 lines (131 loc) · 5.49 KB
/
Blas.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/ScalarOps.h>
namespace at { namespace native {
template<typename scalar_t>
void gemv(char trans, int64_t m, int64_t n, scalar_t alpha, scalar_t *a, int64_t lda, scalar_t *x, int64_t incx, scalar_t beta, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t dot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
template<typename scalar_t>
scalar_t vdot_impl(int64_t n, scalar_t *x, int64_t incx, scalar_t *y, int64_t incy);
constexpr inline bool lda_cond(int64_t m, int64_t n, int64_t lda) {
return n == 1 || lda >= std::max<int64_t>(1L, m);
}
Tensor &addmv_impl_cpu(Tensor& result, const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta_, Scalar alpha_) {
auto r_stride = result.stride(0);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(kBFloat16, mat.scalar_type(), "addmv_impl_cpu", [&] {
auto beta = beta_.to<scalar_t>();
auto alpha = alpha_.to<scalar_t>();
if (mat.stride(0) == 1 && lda_cond(mat.size(0), mat.size(1), mat.stride(1))) {
gemv<scalar_t>('n', mat.size(0), mat.size(1), alpha, mat.data_ptr<scalar_t>(), mat.stride(1),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else if (mat.stride(1) == 1 && lda_cond(mat.size(1), mat.size(0), mat.stride(0))) {
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, mat.data_ptr<scalar_t>(), mat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
else {
Tensor cmat = mat.contiguous();
gemv<scalar_t>('t', mat.size(1), mat.size(0), alpha, cmat.data_ptr<scalar_t>(), cmat.stride(0),
vec.data_ptr<scalar_t>(), vec.stride(0), beta, result.data_ptr<scalar_t>(), r_stride);
}
});
return result;
}
Tensor &addmv_out(Tensor& result, const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
{ // scope of NoNamesGuard
at::NoNamesGuard guard;
result.resize_({mat.size(0)});
Tensor self_ = self;
if (self.dim() == 0 || self.size(0) == 1) {
self_ = self.expand({mat.size(0)});
}
TORCH_CHECK((mat.dim() == 2 && vec.dim() == 1 && self_.dim() == 1),
"vector + matrix @ vector expected, got ", self_.dim(), ", ", mat.dim(), ", ", vec.dim());
TORCH_CHECK((mat.size(1) == vec.size(0) && mat.size(0) == self_.size(0)),
"size mismatch, get ", self_.size(0), ", ", mat.size(0), "x", mat.size(1), ",", vec.size(0));
if (mat.numel() == 0) {
// By definition, when beta==0, values in self should be ignored. nans and infs
// should not propagate
if (beta.toComplexDouble() == 0.0) {
result.zero_();
} else {
at::native::mul_out(result, self, at::native::scalar_tensor(beta, at::device(at::kCPU).dtype(self.scalar_type())));
}
} else {
if (!result.is_same(self_)) {
at::native::copy_(result, self_);
}
if (result.numel() != 0) {
at::_addmv_impl_(result, self_, mat, vec, beta, alpha);
}
}
} // scope of NoNamesGuard
at::namedinference::propagate_names_for_addmv(result, mat, vec, self);
return result;
}
Tensor addmv(const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
Tensor result = at::empty({mat.size(0)}, mat.options());
return native::addmv_out(result, self, mat, vec, beta, alpha);
}
Tensor &addmv_(Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
return native::addmv_out(self, self, mat, vec, beta, alpha);
}
Tensor &mv_out(Tensor& result, const Tensor &self, const Tensor &vec) {
return native::addmv_out(result, result, self, vec, 0, 1);
}
Tensor mv(const Tensor &self, const Tensor &vec) {
Tensor result = at::empty({self.size(0)}, self.options());
return native::mv_out(result, self, vec);
}
inline void dot_check(const Tensor& self, const Tensor& other) {
TORCH_CHECK(
self.dim() == 1 && other.dim() == 1,
"1D tensors expected, but got ",
self.dim(),
"D and ",
other.dim(),
"D tensors");
TORCH_CHECK(
self.scalar_type() == other.scalar_type(),
"dot : expected both vectors to have same dtype, but found ",
self.scalar_type(),
" and ",
other.scalar_type());
TORCH_CHECK(
self.numel() == other.numel(),
"inconsistent tensor size, expected tensor [",
self.numel(),
"] and src [",
other.numel(),
"] to have the same number of elements, but got ",
self.numel(),
" and ",
other.numel(),
" elements respectively");
}
Tensor dot(const Tensor &self, const Tensor &other){
at::NoNamesGuard guard;
dot_check(self, other);
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(at::ScalarType::Half, self.scalar_type(), "dot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(dot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
Tensor vdot(const Tensor &self, const Tensor &other){
at::NoNamesGuard guard;
// Dispatch to `dot` for real dtypes.
if (!self.is_complex()){
return at::dot(self, other);
}
// For complex dtypes.
dot_check(self, other);
return AT_DISPATCH_COMPLEX_TYPES(self.scalar_type(), "vdot", [&] {
Tensor result = at::empty({}, self.options());
result.fill_(vdot_impl<scalar_t>(self.numel(), self.data_ptr<scalar_t>(), self.stride(0), other.data_ptr<scalar_t>(), other.stride(0)));
return result;
});
}
}} // namespace at::native