forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivation.cpp
838 lines (740 loc) · 27.5 KB
/
Activation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
#include <ATen/native/Activation.h>
#include <ATen/ATen.h>
#include <ATen/CPUApplyUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/Parallel.h>
#include <ATen/core/DistributionsHelper.h>
namespace at { namespace native {
static const double SELU_ALPHA = 1.6732632423543772848170429916717;
static const double SELU_SCALE = 1.0507009873554804934193349852946;
DEFINE_DISPATCH(elu_stub);
DEFINE_DISPATCH(elu_backward_stub);
DEFINE_DISPATCH(softplus_stub);
DEFINE_DISPATCH(softplus_backward_stub);
DEFINE_DISPATCH(log_sigmoid_cpu_stub);
DEFINE_DISPATCH(log_sigmoid_backward_cpu_stub);
DEFINE_DISPATCH(threshold_stub);
DEFINE_DISPATCH(hardtanh_backward_stub);
DEFINE_DISPATCH(hardsigmoid_stub);
DEFINE_DISPATCH(hardsigmoid_backward_stub);
DEFINE_DISPATCH(hardswish_stub);
DEFINE_DISPATCH(hardswish_backward_stub);
DEFINE_DISPATCH(hardshrink_stub);
DEFINE_DISPATCH(softshrink_stub);
DEFINE_DISPATCH(shrink_backward_stub);
DEFINE_DISPATCH(leaky_relu_stub);
DEFINE_DISPATCH(leaky_relu_backward_stub);
DEFINE_DISPATCH(silu_stub);
DEFINE_DISPATCH(silu_backward_stub);
Tensor hardtanh(const Tensor& self, Scalar min, Scalar max) {
return at::clamp(self, min, max);
}
Tensor& hardtanh_out(Tensor& result, const Tensor& self, Scalar min, Scalar max) {
return at::clamp_out(result, self, min, max);
}
Tensor& hardtanh_(Tensor& self, Scalar min, Scalar max) {
return at::clamp_(self, min, max);
}
Tensor& hardtanh_backward_out(Tensor& grad_input,
const Tensor& grad_output, const Tensor& self, Scalar min, Scalar max) {
auto iter = TensorIterator::binary_op(grad_input, grad_output, self);
hardtanh_backward_stub(iter.device_type(), iter, min, max);
return grad_input;
}
Tensor hardtanh_backward(const Tensor& grad_output, const Tensor& self, Scalar min, Scalar max) {
Tensor result;
auto iter = TensorIterator::binary_op(result, grad_output, self);
hardtanh_backward_stub(iter.device_type(), iter, min, max);
return iter.output();
}
Tensor hardsigmoid(const Tensor& self) {
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
hardsigmoid_stub(iter.device_type(), iter);
return iter.output();
}
Tensor& hardsigmoid_out(Tensor& result, const Tensor& self) {
auto iter = TensorIterator::unary_op(result, self);
hardsigmoid_stub(iter.device_type(), iter);
return result;
}
Tensor& hardsigmoid_(Tensor& self) {
Tensor result;
auto iter = TensorIterator::unary_op(self, self);
hardsigmoid_stub(iter.device_type(), iter);
return self;
}
Tensor hardsigmoid_backward(const Tensor& grad_output, const Tensor& self) {
Tensor result;
auto iter = TensorIterator::binary_op(result, grad_output, self);
hardsigmoid_backward_stub(iter.device_type(), iter);
return iter.output();
}
Tensor& elu_out(
Tensor& result,
const Tensor& self,
Scalar alpha,
Scalar scale,
Scalar input_scale) {
auto iter = TensorIterator::unary_op(result, self);
elu_stub(iter.device_type(), iter, alpha, scale, input_scale);
return result;
}
Tensor elu(
const Tensor& self,
Scalar alpha,
Scalar scale,
Scalar input_scale) {
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
elu_stub(iter.device_type(), iter, alpha, scale, input_scale);
return iter.output();
}
Tensor & elu_(
Tensor & self,
Scalar alpha,
Scalar scale,
Scalar input_scale) {
return at::elu_out(self, self, alpha, scale, input_scale);
}
Tensor& elu_backward_out(
Tensor& grad_input,
const Tensor& grad_output,
Scalar alpha,
Scalar scale,
Scalar input_scale,
const Tensor& output) {
auto iter = TensorIterator::binary_op(grad_input, grad_output, output);
elu_backward_stub(iter.device_type(), iter, alpha, scale, input_scale);
return grad_input;
}
Tensor elu_backward(
const Tensor& grad_output,
Scalar alpha,
Scalar scale,
Scalar input_scale,
const Tensor& output) {
Tensor result;
auto iter = TensorIterator::binary_op(result, grad_output, output);
elu_backward_stub(iter.device_type(), iter, alpha, scale, input_scale);
return iter.output();
}
Tensor hardswish(const Tensor& self) {
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
hardswish_stub(iter.device_type(), iter);
return iter.output();
}
Tensor& hardswish_out(Tensor& result, const Tensor& self) {
auto iter = TensorIterator::unary_op(result, self);
hardswish_stub(iter.device_type(), iter);
return result;
}
Tensor& hardswish_(Tensor& self) {
auto iter = TensorIterator::unary_op(self, self);
hardswish_stub(iter.device_type(), iter);
return self;
}
Tensor hardswish_backward(const Tensor& grad_output, const Tensor& self) {
Tensor grad_input;
auto iter = TensorIterator::binary_op(grad_input, grad_output, self);
hardswish_backward_stub(iter.device_type(), iter);
return iter.output();
}
Tensor relu(const Tensor & self) {
return at::threshold(self, 0, 0);
}
Tensor & relu_(Tensor & self) {
return at::threshold_(self, 0, 0);
}
Tensor selu(const Tensor & self) {
return at::elu(self, SELU_ALPHA, SELU_SCALE);
}
Tensor & selu_(Tensor & self) {
return at::elu_(self, SELU_ALPHA, SELU_SCALE);
}
Tensor celu(const Tensor & self, Scalar alpha) {
TORCH_CHECK(alpha.to<double>() != 0,
"ZeroDivisionError: alpha cannot be 0 for CELU");
double inv_alpha = 1. / alpha.to<double>();
return at::elu(self, alpha, Scalar(1.0), Scalar(inv_alpha));
}
Tensor & celu_(Tensor & self, Scalar alpha) {
TORCH_CHECK(alpha.to<double>() != 0,
"ZeroDivisionError: alpha cannot be 0 for CELU");
double inv_alpha = 1. / alpha.to<double>();
return at::elu_(self, alpha, Scalar(1.0), Scalar(inv_alpha));
}
Tensor silu(const Tensor& self) {
Tensor result = at::empty({0}, self.options());
at::silu_out(result, self);
return result;
}
Tensor& silu_(Tensor& self) {
return at::silu_out(self, self);
}
Tensor& silu_out(Tensor& result, const Tensor& self) {
TORCH_CHECK(
result.dtype() == self.dtype(),
"Output Tensor should have the same type as in Input Tensor.")
auto iter = TensorIterator::unary_op(result, self);
silu_stub(iter.device_type(), iter);
return result;
}
Tensor silu_backward(
const Tensor& grad_output,
const Tensor& input) {
Tensor grad_input = at::empty({0}, input.options());
auto iter = TensorIterator::binary_op(grad_input, grad_output, input);
silu_backward_stub(iter.device_type(), iter);
return grad_input;
}
template <typename scalar_t>
inline void _rrelu_with_noise_train(
Tensor& output,
const Tensor& input,
const Tensor& noise,
Scalar lower_,
Scalar upper_,
c10::optional<Generator> generator) {
scalar_t lower = lower_.to<scalar_t>();
scalar_t upper = upper_.to<scalar_t>();
Tensor tmp_tensor = output.contiguous();
scalar_t* output_data = tmp_tensor.data_ptr<scalar_t>();
scalar_t* input_data = input.data_ptr<scalar_t>();
scalar_t* noise_data = noise.data_ptr<scalar_t>();
auto gen = at::get_generator_or_default<CPUGeneratorImpl>(generator, detail::getDefaultCPUGenerator());
std::lock_guard<std::mutex> lock(gen->mutex_);
for (int64_t i = 0; i < input.numel(); i++) {
if (input_data[i] <= 0) {
at::uniform_real_distribution<double> uniform(lower, upper);
const scalar_t r = (scalar_t)uniform(gen);
output_data[i] = input_data[i] * r;
noise_data[i] = r;
} else {
noise_data[i] = 1;
output_data[i] = input_data[i];
}
}
if (!output.is_contiguous()) {
output.copy_(tmp_tensor);
}
}
Tensor& rrelu_with_noise_out_cpu(
Tensor& output,
const Tensor& self,
const Tensor& noise,
Scalar lower,
Scalar upper,
bool training,
c10::optional<Generator> generator) {
if (training) {
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "rrelu_with_noise_out_cpu", [&] {
_rrelu_with_noise_train<scalar_t>(output, self.contiguous(), noise, lower, upper, generator);
});
return output;
} else {
auto lower_tensor = scalar_to_tensor(lower, self.device());
auto upper_tensor = scalar_to_tensor(upper, self.device());
auto negative = (lower_tensor + upper_tensor) / 2;
Scalar negative_slope = negative.item();
return at::leaky_relu_out(output, self, negative_slope);
}
}
Tensor rrelu_with_noise_cpu(
const Tensor& self,
const Tensor& noise,
Scalar lower,
Scalar upper,
bool training,
c10::optional<Generator> generator) {
auto output = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
return at::native::rrelu_with_noise_out_cpu(output, self, noise, lower, upper, training, generator);
}
Tensor& rrelu_with_noise_cpu_(
Tensor& self,
const Tensor& noise,
Scalar lower,
Scalar upper,
bool training,
c10::optional<Generator> generator) {
return at::native::rrelu_with_noise_out_cpu(self, self, noise, lower, upper, training, generator);
}
Tensor rrelu_with_noise_backward(
const Tensor& grad_output,
const Tensor& self_or_result,
const Tensor& noise,
Scalar lower,
Scalar upper,
bool training,
bool is_result) {
auto lower_tensor = scalar_to_tensor(lower, grad_output.device());
auto upper_tensor = scalar_to_tensor(upper, grad_output.device());
if (training && (upper_tensor - lower_tensor).item().to<float>() > 1E-6) {
return grad_output.mul(noise);
} else {
auto negative = (lower_tensor + upper_tensor) / 2;
Scalar negative_slope = negative.item();
return at::leaky_relu_backward(grad_output, self_or_result, negative_slope, is_result);
}
}
Tensor rrelu(const Tensor & self, Scalar lower, Scalar upper, bool training, c10::optional<Generator> generator) {
return at::rrelu_with_noise(self, at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT), lower, upper, training, generator);
}
Tensor & rrelu_(Tensor & self, Scalar lower, Scalar upper, bool training, c10::optional<Generator> generator) {
return at::rrelu_with_noise_(self, at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT), lower, upper, training, generator);
}
Tensor & softplus_out(Tensor& result, const Tensor& self, Scalar beta, Scalar threshold) {
auto iter = TensorIterator::unary_op(result, self);
softplus_stub(iter.device_type(), iter, beta, threshold);
return result;
}
Tensor softplus(const Tensor& self, Scalar beta, Scalar threshold) {
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
softplus_stub(iter.device_type(), iter, beta, threshold);
return iter.output();
}
Tensor & softplus_backward_out(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& self,
Scalar beta,
Scalar threshold,
const Tensor& output) {
auto iter = TensorIterator::binary_op(grad_input, grad_output, output);
softplus_backward_stub(iter.device_type(), iter, beta, threshold);
return grad_input;
}
Tensor softplus_backward(
const Tensor& grad_output,
const Tensor& self,
Scalar beta,
Scalar threshold,
const Tensor& output) {
Tensor grad_input;
auto iter = TensorIterator::binary_op(grad_input, grad_output, output);
softplus_backward_stub(iter.device_type(), iter, beta, threshold);
return iter.output();
}
// computes `result = self <= threshold ? value : other`
// other is `self` in threshold() and `grad` in threshold_backward()
static Tensor threshold_out(
optional<Tensor> opt_result,
const Tensor& self,
Scalar threshold,
Scalar value,
const Tensor& other) {
Tensor result = opt_result.value_or(Tensor());
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false) // threshold is idempotent, so overlap is okay
.add_output(result)
.add_input(self)
.add_input(other)
.allow_cpu_scalars(true)
.promote_inputs_to_common_dtype(true)
.cast_common_dtype_to_outputs(true)
.enforce_safe_casting_to_output(true)
.build();
threshold_stub(iter.device_type(), iter, threshold, value);
return iter.output();
}
Tensor threshold(const Tensor& self, Scalar threshold, Scalar value) {
return threshold_out(nullopt, self, threshold, value, self);
}
Tensor& threshold_(Tensor& self, Scalar threshold, Scalar value) {
threshold_out(make_optional(self), self, threshold, value, self);
return self;
}
Tensor& threshold_out(Tensor& result, const Tensor& self, Scalar threshold, Scalar value) {
threshold_out(make_optional(result), self, threshold, value, self);
return result;
}
Tensor threshold_backward(const Tensor& grad, const Tensor& self, Scalar threshold) {
return threshold_out(nullopt, self, threshold, 0, grad);
}
// -----------------------------------
// prelu forward
// -----------------------------------
template <typename scalar_t>
void inline prelu_cpu_kernel_share_weights(
Tensor& result,
const Tensor& input,
const Tensor& weight) {
int64_t input_numel = input.numel();
auto result_data = result.data_ptr<scalar_t>();
auto input_data = input.data_ptr<scalar_t>();
auto weight_val = weight.data_ptr<scalar_t>()[0];
at::parallel_for(0, input_numel, 1000, [&](int64_t start, int64_t end) {
for (auto i = start; i < end; i++) {
scalar_t input_data_val = input_data[i];
// to allow for compiler optimization, here splitting into two lines:
scalar_t r = (input_data_val > 0) ? scalar_t(1) : weight_val;
result_data[i] = r * input_data_val;
}
});
}
template <typename scalar_t>
void inline prelu_cpu_kernel_multi_weights(
Tensor& result,
const Tensor& input,
const Tensor& weight,
int64_t input_dim0_size,
int64_t channel_size,
int64_t input_stride0,
int64_t input_stride1) {
scalar_t* result_data = result.data_ptr<scalar_t>();
scalar_t* input_data = input.data_ptr<scalar_t>();
scalar_t* weight_data = weight.data_ptr<scalar_t>();
auto loop = [&](int64_t start, int64_t end) {
for (auto i = start; i < end; ++i) {
int64_t offset = i * channel_size * input_stride1;
scalar_t* n_input_data = input_data + offset;
scalar_t* n_result_data = result_data + offset;
for (auto j = 0; j < channel_size; ++j) {
for (auto k = 0; k < input_stride1; ++k) {
// to allow for compiler optimization, here splitting into two lines:
scalar_t w = (n_input_data[k] > 0) ? scalar_t(1) : weight_data[j];
n_result_data[k] = w * n_input_data[k];
}
n_input_data += input_stride1;
n_result_data += input_stride1;
}
}
};
if (input.numel() > 1000) {
at::parallel_for(0, input_dim0_size, 0, loop);
} else {
loop(0, input_dim0_size);
}
}
Tensor prelu_cpu(const Tensor& self, const Tensor& weight_) {
auto input = self.contiguous();
auto weight = weight_.contiguous();
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int64_t weight_num = weight.numel();
Tensor result = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto strides = input.strides();
// case1: shared weight for all channels
if (weight_num == 1) {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "prelu_cpu", [&] {
prelu_cpu_kernel_share_weights<scalar_t>(result, input, weight);
});
}
else { // case2: multiple weights, one for each channel
int64_t input_ndim = input.dim();
TORCH_CHECK(input_ndim > 0, "Not allow zero-dim input tensor.");
int64_t channel_size = 1; // channel_size default to 1
int64_t input_dim0_size = 1, input_stride0 = 1, input_stride1 = 1;
if (input_ndim > 1) {
channel_size = input.size(1); // channel is the 2nd dim of input
input_dim0_size = input.size(0);
input_stride0 = strides[0];
input_stride1 = strides[1];
}
TORCH_CHECK(channel_size == weight_num,
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num,
" and channel size = ", channel_size, ".");
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "prelu_cpu", [&] {
prelu_cpu_kernel_multi_weights<scalar_t>(
result,
input,
weight,
input_dim0_size,
channel_size,
input_stride0,
input_stride1);
});
}
return result;
}
// -----------------------------------
// prelu backward
// -----------------------------------
template <typename scalar_t>
void inline prelu_cpu_backward_kernel_share_weights(
const Tensor& input,
const Tensor& weight,
const Tensor& grad_out,
Tensor& input_grad,
Tensor& weight_grad) {
int64_t input_numel = input.numel();
auto input_data = input.data_ptr<scalar_t>();
auto weight_val = weight.data_ptr<scalar_t>()[0];
auto grad_out_data = grad_out.data_ptr<scalar_t>();
auto input_grad_data = input_grad.data_ptr<scalar_t>();
auto weight_grad_data = weight_grad.data_ptr<scalar_t>();
scalar_t sum = at::parallel_reduce(0, input_numel, 1000, scalar_t(0),
[&](int64_t start, int64_t end, scalar_t ident) -> scalar_t {
scalar_t partial_sum = ident;
for (auto i = start; i < end; i++) {
scalar_t input_data_val = input_data[i];
scalar_t grad_out_data_val = grad_out_data[i];
// to allow for compiler optimization, here splitting into two lines:
scalar_t w = (input_data_val > 0) ? scalar_t(1) : weight_val;
input_grad_data[i] = w * grad_out_data_val;
// to allow for compiler optimization, here splitting into two lines:
scalar_t mask = (input_data_val > 0) ? scalar_t(0) : scalar_t(1);
partial_sum += mask * input_data_val * grad_out_data_val;
}
return partial_sum;
}, std::plus<scalar_t>());
weight_grad_data[0] = sum;
}
template <typename scalar_t>
void inline prelu_cpu_backward_kernel_multi_weights(
const Tensor& input,
const Tensor& weight,
const Tensor& grad_out,
Tensor& input_grad,
Tensor& weight_grad_collector,
int64_t input_dim0_size,
int64_t channel_size,
int64_t input_stride0,
int64_t input_stride1) {
auto input_data = input.data_ptr<scalar_t>();
auto weight_data = weight.data_ptr<scalar_t>();
auto grad_out_data = grad_out.data_ptr<scalar_t>();
auto input_grad_data = input_grad.data_ptr<scalar_t>();
auto weight_grad_collector_data = weight_grad_collector.data_ptr<scalar_t>();
auto loop = [&](int64_t start, int64_t end) {
for (auto i = start; i < end; i++) {
for (auto j = 0; j < channel_size; j++) {
for (auto k = 0; k < input_stride1; k++) {
int64_t pos = i * input_stride0 + j * input_stride1 + k;
scalar_t weight_data_val = weight_data[j];
scalar_t input_data_val = input_data[pos];
scalar_t grad_out_data_val = grad_out_data[pos];
// to allow for compiler optimization, here splitting into two lines:
scalar_t w = (input_data_val > 0) ? scalar_t(1) : weight_data_val;
input_grad_data[pos] = w * grad_out_data_val;
// to allow for compiler optimization, here splitting into two lines:
scalar_t mask = (input_data_val > 0) ? scalar_t(0) : scalar_t(1);
weight_grad_collector_data[pos] = mask * input_data_val * grad_out_data_val;
}
}
}
};
if (input.numel() > 1000) {
at::parallel_for(0, input_dim0_size, 0, loop);
} else {
loop(0, input_dim0_size);
}
}
std::tuple<Tensor, Tensor> prelu_backward_cpu(const Tensor& grad_out_, const Tensor& self, const Tensor& weight_) {
auto input = self.contiguous();
auto grad_out = grad_out_.contiguous();
auto weight = weight_.contiguous();
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(grad_out.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int64_t weight_num = weight.numel();
auto strides = input.strides();
auto dims = input.dim();
Tensor input_grad = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
Tensor weight_grad = at::empty_like(weight, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
Tensor weight_grad_collector = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
// case1: shared parameter for all channels
if (weight_num == 1) {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "prelu_backward_cpu", [&] {
prelu_cpu_backward_kernel_share_weights<scalar_t>(input, weight, grad_out, input_grad, weight_grad);
});
}
else { // case2: multiple parameters, one for each channel
int64_t input_ndim = input.dim();
TORCH_CHECK(input_ndim > 0, "Not allow zero-dim input tensor.");
int64_t channel_size = 1; // channel_size default to 1
int64_t input_dim0_size = 1, input_stride0 = 1, input_stride1 = 1;
if (input_ndim > 1) {
channel_size = input.size(1); // channel is the 2nd dim of input
input_dim0_size = input.size(0);
input_stride0 = strides[0];
input_stride1 = strides[1];
}
TORCH_CHECK(channel_size == weight_num,
"Mismatch of parameter numbers and input channel size. Found parameter numbers = ", weight_num,
" and channel size = ", channel_size, ".");
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "prelu_backward_cpu", [&] {
prelu_cpu_backward_kernel_multi_weights<scalar_t>(
input,
weight,
grad_out,
input_grad,
weight_grad_collector,
input_dim0_size,
channel_size,
input_stride0,
input_stride1);
});
// update weight_grad
std::vector<int64_t> reduce_dims;
reduce_dims.push_back(0);
if (dims > 2) {
for(int64_t i = 2; i < dims; i++) reduce_dims.push_back(i);
}
weight_grad = weight_grad_collector.sum(reduce_dims);
}
return std::tuple<Tensor, Tensor>{input_grad, weight_grad};
}
// -----------------------------------
// hardshrink
// -----------------------------------
Tensor hardshrink(const Tensor & self, Scalar lambd) {
auto out_tensor = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto iter = TensorIterator::unary_op(out_tensor, self);
hardshrink_stub(iter.device_type(), iter, lambd);
return out_tensor;
}
Tensor hardshrink_backward(const Tensor & grad, const Tensor & self, Scalar lambd) {
auto out_tensor = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto iter = TensorIterator::binary_op(out_tensor, grad, self);
shrink_backward_stub(iter.device_type(), iter, lambd);
return out_tensor;
}
static inline void softshrink_check(Scalar lambd) {
double lamb = lambd.to<double>();
TORCH_CHECK(lamb >= 0, "lambda must be greater or equal to 0, but found to be ", lamb, ".");
}
Tensor& softshrink_out(Tensor& result, const Tensor & self, Scalar lambd) {
softshrink_check(lambd);
auto iter = TensorIterator::unary_op(result, self);
softshrink_stub(iter.device_type(), iter, lambd);
return result;
}
Tensor softshrink(const Tensor & self, Scalar lambd) {
softshrink_check(lambd);
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
softshrink_stub(iter.device_type(), iter, lambd);
return iter.output();
}
Tensor& softshrink_backward_out(Tensor& grad_input, const Tensor & grad, const Tensor & self, Scalar lambd) {
auto iter = TensorIterator::binary_op(grad_input, grad, self);
shrink_backward_stub(iter.device_type(), iter, lambd);
return grad_input;
}
Tensor softshrink_backward(const Tensor & grad, const Tensor & self, Scalar lambd) {
Tensor result;
auto iter = TensorIterator::binary_op(result, grad, self);
shrink_backward_stub(iter.device_type(), iter, lambd);
return iter.output();
}
Tensor gelu_cpu(const Tensor& self) {
Tensor Y = at::native::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto it = TensorIterator::unary_op(Y, self);
GeluKernel(kCPU, it);
return Y;
}
Tensor gelu_backward_cpu(const Tensor& grad, const Tensor& self) {
Tensor dX = at::native::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto it = TensorIterator::binary_op(dX, grad, self);
GeluBackwardKernel(kCPU, it);
return dX;
}
Tensor infinitely_differentiable_gelu_backward(
const Tensor& grad,
const Tensor& self) {
constexpr double kAlpha = M_2_SQRTPI * M_SQRT1_2 * 0.5;
Tensor cdf = (1.0 + (self * M_SQRT1_2).erf_()).mul_(0.5);
Tensor pdf = (-0.5 * self * self).exp_();
return cdf.addcmul_(self, pdf, kAlpha).mul_(grad);
}
Tensor& leaky_relu_out(
Tensor& result,
const Tensor& self,
Scalar negval) {
auto iter = TensorIterator::unary_op(result, self);
leaky_relu_stub(iter.device_type(), iter, negval);
return result;
}
Tensor leaky_relu(
const Tensor& self,
Scalar negval) {
Tensor result;
auto iter = TensorIterator::unary_op(result, self);
leaky_relu_stub(iter.device_type(), iter, negval);
return iter.output();
}
Tensor & leaky_relu_(
Tensor & self,
Scalar neg_val) {
return at::leaky_relu_out(self, self, neg_val);
}
// Note: leakyReLu backward calculation doesn't support in-place call with negative slope.
// The reason is that for in-place forward call, the forward result will be saved into autograd
// node instead of the input itself, when calculating backward gradient, there is no way to know
// whether the original input for current node is positive or not if the input slope is
// negative. eg. forward is 2, slope is -0.2, the original input for this node could be
// either 2, or -10, so no way to get a correct backward gradient in this case.
Tensor leaky_relu_backward(
const Tensor& grad_output,
const Tensor& self_or_result,
Scalar negval,
bool is_result) {
TORCH_CHECK(
!is_result || negval.to<double>() >= 0.0,
"In-place leakyReLu backward calculation is triggered with a negative slope which is not supported. "
"This is caused by calling in-place forward function with a negative slope, "
"please call out-of-place version instead. File an issue at https://github.com/pytorch/pytorch if you do "
"require supporting in-place leakRelu backward calculation with negative slope");
Tensor result;
auto iter = TensorIterator::binary_op(result, self_or_result, grad_output);
leaky_relu_backward_stub(iter.device_type(), iter, negval);
return iter.output();
}
std::tuple<Tensor, Tensor> log_sigmoid_forward_cpu(const Tensor& input) {
// FIXME: do these actually need to be zeros_like or can they be empty_like?
auto result = at::zeros_like(input, at::MemoryFormat::Contiguous);
auto buffer = at::zeros_like(input, at::MemoryFormat::Contiguous);
log_sigmoid_cpu_stub(kCPU, result, buffer, input.contiguous());
return std::make_tuple(result, buffer);
}
std::tuple<Tensor&, Tensor&> log_sigmoid_forward_out_cpu(Tensor& result, Tensor& buffer, const Tensor& input) {
result.resize_as_(input);
buffer.resize_as_(input, at::MemoryFormat::Contiguous);
TORCH_CHECK(buffer.is_contiguous(), "Contiguous buffer required for log_sigmoid with out parameter");
Tensor result_tmp = result.is_contiguous() ? result : at::empty_like(result, at::MemoryFormat::Contiguous);
log_sigmoid_cpu_stub(kCPU, result_tmp, buffer, input.contiguous());
if (!result.is_contiguous()) {
result.copy_(result_tmp);
}
return std::forward_as_tuple(result, buffer);
}
Tensor & log_sigmoid_out(Tensor & output, const Tensor & self) {
Tensor buffer = at::empty({0}, self.options());
return std::get<0>(at::log_sigmoid_forward_out(output, buffer, self));
}
Tensor log_sigmoid(const Tensor & self) {
return std::get<0>(at::log_sigmoid_forward(self));
}
Tensor log_sigmoid_backward_cpu(const Tensor& grad_output, const Tensor& input, const Tensor& buffer) {
Tensor grad_input;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_input(input)
.add_input(buffer)
.add_input(grad_output)
.build();
log_sigmoid_backward_cpu_stub(kCPU, iter);
return iter.output();
}
Tensor& log_sigmoid_backward_out_cpu(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& input,
const Tensor& buffer) {
auto iter = TensorIteratorConfig()
.add_output(grad_input)
.add_input(input)
.add_input(buffer)
.add_input(grad_output)
.build();
log_sigmoid_backward_cpu_stub(kCPU, iter);
return grad_input;
}
DEFINE_DISPATCH(GeluKernel);
DEFINE_DISPATCH(GeluBackwardKernel);
}} // namespace at::native