This page includes pre-trained models from the paper Understanding Back-Translation at Scale (Edunov et al., 2018).
Description | Dataset | Model | Test set(s) |
---|---|---|---|
Transformer (Edunov et al., 2018; WMT'18 winner) |
WMT'18 English-German | download (.tar.gz) | See NOTE in the archive |
Interactive generation from the full ensemble via PyTorch Hub:
>>> import torch
>>> en2de_ensemble = torch.hub.load(
... 'pytorch/fairseq',
... 'transformer',
... model_name_or_path='transformer.wmt18.en-de',
... checkpoint_file='wmt18.model1.pt:wmt18.model2.pt:wmt18.model3.pt:wmt18.model4.pt:wmt18.model5.pt',
... data_name_or_path='.',
... tokenizer='moses',
... aggressive_dash_splits=True,
... bpe='subword_nmt',
... )
>>> len(en2de_ensemble.models)
5
>>> print(en2de_ensemble.generate('Hello world!'))
Hallo Welt!
@inproceedings{edunov2018backtranslation,
title = {Understanding Back-Translation at Scale},
author = {Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David},
booktitle = {Conference of the Association for Computational Linguistics (ACL)},
year = 2018,
}