-
Notifications
You must be signed in to change notification settings - Fork 0
/
hednet_transfusion_L_nusc_trainval.py
120 lines (114 loc) · 3.56 KB
/
hednet_transfusion_L_nusc_trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
_base_=['./hednet_transfusion_L_nusc.py']
point_cloud_range = [-54.0, -54.0, -5.0, 54.0, 54.0, 3.0]
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
voxel_size = [0.075, 0.075, 0.2]
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
input_modality = dict(
use_lidar=True,
use_camera=False,
use_radar=False,
use_map=False,
use_external=False)
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=[0, 1, 2, 3, 4],
),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
use_dim=[0, 1, 2, 3, 4],
remove_close=True,
),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='ObjectSample',
db_sampler=dict(
data_root=data_root,
info_path=data_root + 'nuscenes_dbinfos_trainval.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(
car=5,
truck=5,
bus=5,
trailer=5,
construction_vehicle=5,
traffic_cone=5,
barrier=5,
motorcycle=5,
bicycle=5,
pedestrian=5)),
classes=class_names,
sample_groups=dict(
car=2,
truck=3,
construction_vehicle=7,
bus=4,
trailer=6,
barrier=2,
motorcycle=6,
bicycle=6,
pedestrian=2,
traffic_cone=2),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=[0, 1, 2, 3, 4],
)),
max_abled_epoch=12),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925 * 2, 0.3925 * 2],
scale_ratio_range=[0.9, 1.1],
translation_std=[0.5, 0.5, 0.5]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=6,
train=dict(
type='CBGSDataset',
dataset=[
dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + '/nuscenes_infos_train.pkl',
load_interval=1,
pipeline=train_pipeline,
classes=class_names,
modality=input_modality,
test_mode=False,
box_type_3d='LiDAR'),
dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + '/nuscenes_infos_val.pkl',
load_interval=1,
pipeline=train_pipeline,
classes=class_names,
modality=input_modality,
test_mode=False,
box_type_3d='LiDAR'),
]
)
)
custom_hooks = []