-
Notifications
You must be signed in to change notification settings - Fork 8
/
demo.py
87 lines (69 loc) · 2.79 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from PIL import Image
import os
from runpy import run_path
from skimage import img_as_ubyte
from collections import OrderedDict
from natsort import natsorted
from glob import glob
import cv2
import argparse
parser = argparse.ArgumentParser(description='Demo MemoryNet')
parser.add_argument('--input_dir', default='./samples/input/', type=str, help='Input images')
parser.add_argument('--result_dir', default='./samples/output/', type=str, help='Directory for results')
parser.add_argument('--task', required=True, type=str, help='Task to run', choices=['Deblurring', 'Denoising', 'Deraining'])
args = parser.parse_args()
def save_img(filepath, img):
cv2.imwrite(filepath,cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
def load_checkpoint(model, weights):
checkpoint = torch.load(weights)
try:
model.load_state_dict(checkpoint["state_dict"])
except:
state_dict = checkpoint["state_dict"]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
task = args.task
inp_dir = args.input_dir
out_dir = args.result_dir
os.makedirs(out_dir, exist_ok=True)
files = natsorted(glob(os.path.join(inp_dir, '*.jpg'))
+ glob(os.path.join(inp_dir, '*.JPG'))
+ glob(os.path.join(inp_dir, '*.png'))
+ glob(os.path.join(inp_dir, '*.PNG')))
if len(files) == 0:
raise Exception(f"No files found at {inp_dir}")
# Load corresponding model architecture and weights
load_file = run_path(os.path.join(task, "MemoryNet.py"))
model = load_file['MemoryNet']()
model.cuda()
weights = os.path.join(task, "pretrained_models", "model_"+task.lower()+".pth")
load_checkpoint(model, weights)
model.eval()
img_multiple_of = 8
for file_ in files:
img = Image.open(file_).convert('RGB')
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
# Pad the input if not_multiple_of 8
h,w = input_.shape[2], input_.shape[3]
H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of
padh = H-h if h%img_multiple_of!=0 else 0
padw = W-w if w%img_multiple_of!=0 else 0
input_ = F.pad(input_, (0,padw,0,padh), 'reflect')
with torch.no_grad():
restored = model(input_)
restored = restored[0]
restored = torch.clamp(restored, 0, 1)
# Unpad the output
restored = restored[:,:,:h,:w]
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
restored = img_as_ubyte(restored[0])
f = os.path.splitext(os.path.split(file_)[-1])[0]
save_img((os.path.join(out_dir, f+'.png')), restored)
print(f"Files saved at {out_dir}")