-
Notifications
You must be signed in to change notification settings - Fork 16
/
clothes_detector.py
276 lines (253 loc) · 12.3 KB
/
clothes_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 23 18:57:19 2018
@author: Zeynep Cankara
Playing with pre-trained models
Note you should try to fine-tune model with new set of classes: good article: https://www.learnopencv.com/keras-tutorial-fine-tuning-using-pre-trained-models/
"""
#ALL LIBRARIES IMPORTED IN HERE
import numpy as np
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
#make a prediction from your test
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing import image
from keras.models import load_model
import matplotlib.pyplot as plt
import cv2 as cv
from flask import Flask, current_app
import json
"""
functions in the final_prediction_zeynep module
"""
from prediction_module import crop_image, custom_bbox, clothing_color_pattern, acsessory_pattern_color
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
"*********************************************************************************"
#map imports
from utils import label_map_util
from utils import visualization_utils as vis_util
"*********************************************************************************"
# What model to download.
MODEL_NAME = 'mask_rcnn_inception_v2_coco_2018_01_28'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
#number of classes in the COCO dataset
NUM_CLASSES = 90
"*********************************************************************************"
#set the model
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
"********************************************************************************"
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
"*********************************************************************************"
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
"**********************************************************************************"
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
"************************************************************************************"
PATH_TO_TEST_IMAGES_DIR = 'static/img'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, int(len(PATH_TO_TEST_IMAGES_DIR))) ] #runs prediction on the every image in the directory
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
"**********************************************************************************"
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
#small test
print( detection_masks_reframed )
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
"**************************************************************"
def predict_image():
#initialize the dictionary
image_json_dict = dict()
#just to label images
count = 0
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
"""
Small trial for saving the image
"""
#save masked images 'prediction/image_path
plt.imsave("prediction/" + str(str(image_path)[33:-4] + "masked.jpg" ),image_np)
#cv.imwrite(str(str(image_path) + "masked"), image_np)
"************************************************************"
boxes = output_dict['detection_boxes']
#initialize the lists here for bounding boxes not real one playing with format
image_dict = dict()
xmin_list = list()
xmax_list = list()
ymin_list = list()
ymax_list = list()
class_list = list()
score_list = list()
box_dict = dict()
prediction_dict = dict()
acsessory_list = list()
clothing_list = list()
#iterating over possible boxes
for i in range(min(20, boxes.shape[0])):
if output_dict['detection_scores'] is None or output_dict['detection_scores'][i] > 0.5:
box = tuple(boxes[i].tolist())
ymin, xmin, ymax, xmax = box
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax *im_height)
print("for image: " + str(i) + ": " + str(left) +" , " + str(right) +" , " + str(output_dict['detection_classes'][i]) )
objects = []
for index, value in enumerate(output_dict['detection_classes']):
object_dict = {}
threshold = 0.5
if output_dict['detection_scores'][index] > threshold:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
output_dict['detection_scores'][index]
objects.append(object_dict)
#obtaining classes
print(str(list(objects[i].keys())[0]))
#obtaining class scores
print(float(list(objects[i].items())[0][1]))
#gives the label of the detection you can get the score by .values()
#add your boxes for constructing a json
class_list.append(str(list(objects[i].keys())[0]))
xmin_list.append(int(left))
ymin_list.append(int(top))
xmax_list.append(int(right))
ymax_list.append(int(bottom))
score_list.append(float(list(objects[i].items())[0][1]))
#I decided doing the saving here
clothing = ""
acsessory = ""
#load image and pattern models here
im_width, im_height = image.size
if(str(list(objects[i].keys())[0]) == "b'person'"):
clothing = crop_image(str(image_path),int(left), int(top), int(right), int(bottom), im_width, im_height)
acsessories_list = ["b'backpack", "b'umbrella", "b'book", "b'cell phone", "b'tie", "b'suitcase", "b'handbag", "b'baseball glove", "b'tennis racket", "b'laptop" ]
if(str(list(objects[i].keys())[0]) in acsessories_list):
acsessory = acsessory_pattern_color(str(list(objects[i].keys())[0]), str(image_path),int(left), int(top), int(right) ,int(bottom), im_width, im_height)
#End of my experiment
clothing_list.append(str(clothing))
acsessory_list.append(str(acsessory))
prediction_dict = {'acsessories': acsessory_list, 'clothes': clothing_list}
#WORKING PLACE
box_dict = {'classes': class_list, 'xmin': xmin_list, 'ymin': ymin_list, 'xmax': xmax_list, 'ymax': ymax_list, 'scores' : score_list }
image_dict['boxes'] = box_dict
image_dict['prediction result'] = prediction_dict
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax *im_height)
image_dict['file_path'] = str(image_path)
image_dict['width'] = int(im_width)
image_dict['height'] = int(im_height)
ymin, xmin, ymax, xmax = box
#image_list.append(image_dict)
image_json_dict['image' + str(count)] = image_dict
count+=1
return image_json_dict
json_dict = predict_image()
"""
Writing the json as a txt file named 'data.txt'
"""
with open('data.txt', 'w') as outfile:
json.dump(json_dict, outfile)
"""
Overlay 2 images on top of each other, for applying mask on the custom prediction
"""
#test can applied to all images
"""
image2 = cv.imread("test_images/image4.jpg")
image = cv.imread("test_images/image4masked.jpg")
overlay = image.copy()
output = image2.copy()
cv.addWeighted(overlay, 0.5, output, 0.5,
0, output) #need to be same shape
# show the output image
cv.imwrite("test_images/img_output4.jpg", output)
"""