-
Notifications
You must be signed in to change notification settings - Fork 6.7k
/
irq_manage.c
294 lines (251 loc) · 8.49 KB
/
irq_manage.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Interrupt support for IA-32 arch
*
* INTERNAL
* The _idt_base_address symbol is used to determine the base address of the IDT.
* (It is generated by the linker script, and doesn't correspond to an actual
* global variable.)
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <kernel_structs.h>
#include <sys/__assert.h>
#include <sys/printk.h>
#include <irq.h>
#include <debug/tracing.h>
#include <kswap.h>
#include <arch/x86/ia32/segmentation.h>
extern void z_SpuriousIntHandler(void *handler);
extern void z_SpuriousIntNoErrCodeHandler(void *handler);
/*
* Place the addresses of the spurious interrupt handlers into the intList
* section. The genIdt tool can then populate any unused vectors with
* these routines.
*/
void *__attribute__((section(".spurIsr"))) MK_ISR_NAME(z_SpuriousIntHandler) =
&z_SpuriousIntHandler;
void *__attribute__((section(".spurNoErrIsr")))
MK_ISR_NAME(z_SpuriousIntNoErrCodeHandler) =
&z_SpuriousIntNoErrCodeHandler;
/* FIXME: IRQ direct inline functions have to be placed here and not in
* arch/cpu.h as inline functions due to nasty circular dependency between
* arch/cpu.h and kernel_structs.h; the inline functions typically need to
* perform operations on _kernel. For now, leave as regular functions, a
* future iteration will resolve this.
*
* See https://github.com/zephyrproject-rtos/zephyr/issues/3056
*/
#ifdef CONFIG_SYS_POWER_MANAGEMENT
void z_arch_irq_direct_pm(void)
{
if (_kernel.idle) {
s32_t idle_val = _kernel.idle;
_kernel.idle = 0;
z_sys_power_save_idle_exit(idle_val);
}
}
#endif
void z_arch_isr_direct_header(void)
{
sys_trace_isr_enter();
/* We're not going to unlock IRQs, but we still need to increment this
* so that z_arch_is_in_isr() works
*/
++_kernel.nested;
}
void z_arch_isr_direct_footer(int swap)
{
z_irq_controller_eoi();
sys_trace_isr_exit();
--_kernel.nested;
/* Call swap if all the following is true:
*
* 1) swap argument was enabled to this function
* 2) We are not in a nested interrupt
* 3) Next thread to run in the ready queue is not this thread
*/
if (swap != 0 && _kernel.nested == 0 &&
_kernel.ready_q.cache != _current) {
unsigned int flags;
/* Fetch EFLAGS argument to z_swap() */
__asm__ volatile (
"pushfl\n\t"
"popl %0\n\t"
: "=g" (flags)
:
: "memory"
);
(void)z_swap_irqlock(flags);
}
}
#if CONFIG_X86_DYNAMIC_IRQ_STUBS > 0
/*
* z_interrupt_vectors_allocated[] bitfield is generated by the 'gen_idt' tool.
* It is initialized to identify which interrupts have been statically
* connected and which interrupts are available to be dynamically connected at
* run time, with a 1 bit indicating a free vector. The variable itself is
* defined in the linker file.
*/
extern unsigned int z_interrupt_vectors_allocated[];
struct dyn_irq_info {
/** IRQ handler */
void (*handler)(void *param);
/** Parameter to pass to the handler */
void *param;
};
/*
* Instead of creating a large sparse table mapping all possible IDT vectors
* to dyn_irq_info, the dynamic stubs push a "stub id" onto the stack
* which is used by common_dynamic_handler() to fetch the appropriate
* information out of this much smaller table
*/
static struct dyn_irq_info dyn_irq_list[CONFIG_X86_DYNAMIC_IRQ_STUBS];
static unsigned int next_irq_stub;
/* Memory address pointing to where in ROM the code for the dynamic stubs are.
* Linker symbol.
*/
extern char z_dynamic_stubs_begin[];
/**
* @brief Allocate a free interrupt vector given <priority>
*
* This routine scans the z_interrupt_vectors_allocated[] array for a free vector
* that satisfies the specified <priority>.
*
* This routine assumes that the relationship between interrupt priority and
* interrupt vector is :
*
* priority = (vector / 16) - 2;
*
* Vectors 0 to 31 are reserved for CPU exceptions and do NOT fall under
* the priority scheme. The first vector used for priority level 0 will be 32.
* Each interrupt priority level contains 16 vectors.
*
* It is also assumed that the interrupt controllers are capable of managing
* interrupt requests on a per-vector level as opposed to a per-priority level.
* For example, the local APIC on Pentium4 and later processors, the in-service
* register (ISR) and the interrupt request register (IRR) are 256 bits wide.
*
* @return allocated interrupt vector
*/
static unsigned int priority_to_free_vector(unsigned int requested_priority)
{
unsigned int entry;
unsigned int fsb; /* first set bit in entry */
unsigned int search_set;
unsigned int vector_block;
unsigned int vector;
static unsigned int mask[2] = {0x0000ffffU, 0xffff0000U};
vector_block = requested_priority + 2;
__ASSERT(((vector_block << 4) + 15) <= CONFIG_IDT_NUM_VECTORS,
"IDT too small (%d entries) to use priority %d",
CONFIG_IDT_NUM_VECTORS, requested_priority);
/*
* Atomically allocate a vector from the
* z_interrupt_vectors_allocated[] array to prevent race conditions
* with other threads attempting to allocate an interrupt
* vector.
*
* Note: As z_interrupt_vectors_allocated[] is initialized by the
* 'gen_idt.py' tool, it is critical that this routine use the same
* algorithm as the 'gen_idt.py' tool for allocating interrupt vectors.
*/
entry = vector_block >> 1;
/*
* The z_interrupt_vectors_allocated[] entry indexed by 'entry'
* is a 32-bit quantity and thus represents the vectors for a pair of
* priority levels. Mask out the unwanted priority level and then use
* find_lsb_set() to scan for an available vector of the requested
* priority.
*
* Note that find_lsb_set() returns bit position from 1 to 32, or 0 if
* the argument is zero.
*/
search_set = mask[vector_block & 1] &
z_interrupt_vectors_allocated[entry];
fsb = find_lsb_set(search_set);
__ASSERT(fsb != 0U, "No remaning vectors for priority level %d",
requested_priority);
/*
* An available vector of the requested priority was found.
* Mark it as allocated by clearing the bit.
*/
--fsb;
z_interrupt_vectors_allocated[entry] &= ~BIT(fsb);
/* compute vector given allocated bit within the priority level */
vector = (entry << 5) + fsb;
return vector;
}
/**
* @brief Get the memory address of an unused dynamic IRQ or exception stub
*
* We generate at build time a set of dynamic stubs which push
* a stub index onto the stack for use as an argument by
* common handling code.
*
* @param stub_idx Stub number to fetch the corresponding stub function
* @return Pointer to the stub code to install into the IDT
*/
static void *get_dynamic_stub(int stub_idx)
{
u32_t offset;
/*
* Because we want the sizes of the stubs to be consistent and minimized,
* stubs are grouped into blocks, each containing a push and subsequent
* 2-byte jump instruction to the end of the block, which then contains
* a larger jump instruction to common dynamic IRQ handling code
*/
offset = (stub_idx * Z_DYN_STUB_SIZE) +
((stub_idx / Z_DYN_STUB_PER_BLOCK) *
Z_DYN_STUB_LONG_JMP_EXTRA_SIZE);
return (void *)((u32_t)&z_dynamic_stubs_begin + offset);
}
extern const struct pseudo_descriptor z_x86_idt;
static void idt_vector_install(int vector, void *irq_handler)
{
int key;
key = irq_lock();
z_init_irq_gate(&z_x86_idt.entries[vector], CODE_SEG,
(u32_t)irq_handler, 0);
irq_unlock(key);
}
int z_arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*routine)(void *parameter), void *parameter,
u32_t flags)
{
int vector, stub_idx, key;
key = irq_lock();
vector = priority_to_free_vector(priority);
/* 0 indicates not used, vectors for interrupts start at 32 */
__ASSERT(_irq_to_interrupt_vector[irq] == 0U,
"IRQ %d already configured", irq);
_irq_to_interrupt_vector[irq] = vector;
z_irq_controller_irq_config(vector, irq, flags);
stub_idx = next_irq_stub++;
__ASSERT(stub_idx < CONFIG_X86_DYNAMIC_IRQ_STUBS,
"No available interrupt stubs found");
dyn_irq_list[stub_idx].handler = routine;
dyn_irq_list[stub_idx].param = parameter;
idt_vector_install(vector, get_dynamic_stub(stub_idx));
irq_unlock(key);
return vector;
}
/**
* @brief Common dynamic IRQ handler function
*
* This gets called by the IRQ entry asm code with the stub index supplied as
* an argument. Look up the required information in dyn_irq_list and
* execute it.
*
* @param stub_idx Index into the dyn_irq_list array
*/
void z_x86_dynamic_irq_handler(u8_t stub_idx)
{
dyn_irq_list[stub_idx].handler(dyn_irq_list[stub_idx].param);
}
#endif /* CONFIG_X86_DYNAMIC_IRQ_STUBS > 0 */