Skip to content

Latest commit

 

History

History
52 lines (47 loc) · 1.47 KB

DOWNLOAD.md

File metadata and controls

52 lines (47 loc) · 1.47 KB

We use exectly same datasets as pose2mesh. Please following the instructions to perpare datasets and files (all download links are provided in their repository).

Data

The data directory structure should follow the below hierarchy.

${ROOT}  
|-- data  
|   |-- Human36M  
|   |   |-- images  
|   |   |-- annotations   
|   |   |-- J_regressor_h36m_correct.npy
|   |   |-- absnet_output_on_testset.json 
|   |-- MuCo  
|   |   |-- data  
|   |   |   |-- augmented_set  
|   |   |   |-- unaugmented_set  
|   |   |   |-- MuCo-3DHP.json
|   |   |   |-- smpl_param.json
|   |-- COCO  
|   |   |-- images  
|   |   |   |-- train2017  
|   |   |   |-- val2017  
|   |   |-- annotations  
|   |   |-- J_regressor_coco.npy
|   |   |-- hrnet_output_on_valset.json
|   |-- PW3D 
|   |   |-- data
|   |   |   |-- 3DPW_latest_train.json
|   |   |   |-- 3DPW_latest_validation.json
|   |   |   |-- darkpose_3dpw_testset_output.json
|   |   |   |-- darkpose_3dpw_validationset_output.json
|   |   |-- imageFiles
|   |-- AMASS
|   |   |-- data
|   |   |   |-- cmu
|   |-- SURREAL
|   |   |-- data
|   |   |   |-- train.json
|   |   |   |-- val.json
|   |   |   |-- hrnet_output_on_testset.json
|   |   |   |-- simple_output_on_testset.json
|   |   |-- images
|   |   |   |-- train
|   |   |   |-- test
|   |   |   |-- val

Pytorch SMPL

Please following instructions in pose2mesh for SMPL files.