We use exectly same datasets as pose2mesh
. Please following the instructions to perpare datasets and files (all download links are provided in their repository).
The data
directory structure should follow the below hierarchy.
${ROOT}
|-- data
| |-- Human36M
| | |-- images
| | |-- annotations
| | |-- J_regressor_h36m_correct.npy
| | |-- absnet_output_on_testset.json
| |-- MuCo
| | |-- data
| | | |-- augmented_set
| | | |-- unaugmented_set
| | | |-- MuCo-3DHP.json
| | | |-- smpl_param.json
| |-- COCO
| | |-- images
| | | |-- train2017
| | | |-- val2017
| | |-- annotations
| | |-- J_regressor_coco.npy
| | |-- hrnet_output_on_valset.json
| |-- PW3D
| | |-- data
| | | |-- 3DPW_latest_train.json
| | | |-- 3DPW_latest_validation.json
| | | |-- darkpose_3dpw_testset_output.json
| | | |-- darkpose_3dpw_validationset_output.json
| | |-- imageFiles
| |-- AMASS
| | |-- data
| | | |-- cmu
| |-- SURREAL
| | |-- data
| | | |-- train.json
| | | |-- val.json
| | | |-- hrnet_output_on_testset.json
| | | |-- simple_output_on_testset.json
| | |-- images
| | | |-- train
| | | |-- test
| | | |-- val
Please following instructions in pose2mesh
for SMPL files.