-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
388 lines (317 loc) · 15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import nn
from timm.models.layers.weight_init import trunc_normal_
from ViT_model import VisionTransformer
from utils import compute_rotation_matrix_from_ortho6d
import matplotlib.pyplot as plt
import seaborn as sns
MIN_NUM_PATCHES = 16
BN_MOMENTUM = 0.1
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn, fusion_factor=1):
super().__init__()
self.norm = nn.LayerNorm(dim * fusion_factor)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dropout=0., num_ori_tokens=None, scale_with_head=False, show_attns=False,n_dep=0):
super().__init__()
self.heads = heads
self.scale = (dim // heads) ** -0.5 if scale_with_head else dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(dim, dim),
nn.Dropout(dropout)
)
self.show_attns = show_attns
self.num_ori_tokens = num_ori_tokens
self.n_dep = n_dep
def plot_attention(self, attn, type="single head", head_index=5):
if not os.path.exists('output/vis'):
os.makedirs('output/vis')
if type == "single head":
values = attn[0,head_index,0:self.num_ori_tokens,0:self.num_ori_tokens].detach().cpu()
else: # all heads
values = torch.sum(attn,dim=1)
values = values[0, 0:self.num_ori_tokens, 0:self.num_ori_tokens].detach().cpu()
fig = plt.figure()
sns.heatmap(values, cmap='plasma')
fig.savefig(f"./output/vis/attention interaction in layer {self.n_dep+1}.png", bbox_inches='tight')
plt.show()
def forward(self, x, mask=None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
mask_value = -torch.finfo(dots.dtype).max
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value=True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, mask_value)
del mask
attn = dots.softmax(dim=-1)
if self.show_attns == True:
self.plot_attention(attn)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim, dropout, num_ori_tokens=None,
all_attn=False, scale_with_head=False, show_attns=False):
super().__init__()
self.layers = nn.ModuleList([])
self.all_attn = all_attn
self.num_ori_tokens = num_ori_tokens
for n_dep in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads=heads, dropout=dropout, num_ori_tokens=num_ori_tokens,
scale_with_head=scale_with_head,show_attns=show_attns,n_dep=n_dep))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)))
]))
def forward(self, x, mask=None, pos=None):
for idx, (attn, ff) in enumerate(self.layers):
if idx > 0 and self.all_attn:
x[:, self.num_ori_tokens:] += pos
x = attn(x, mask=mask)
x = ff(x)
return x
class Orientation_Blocks(nn.Module):
"""
feature extractor (ViT) -> Orientation_Blocks -> outputs in all regions
"""
def __init__(self, *, num_ori_tokens, dim, depth, heads, mlp_dim,
dropout=0., emb_dropout=0., pos_embedding_type="learnable",
ViT_feature_dim, ViT_feature_num, w, h, inference_view=False):
"""
inference_view: In inference stage, for a single image input, show the ori_tokens similarity matrix
and the attention interactions of the learned ori_tokens in each Transformer layer.
"""
super().__init__()
patch_dim = ViT_feature_dim
self.inplanes = 64
self.num_ori_tokens = num_ori_tokens
self.num_patches = ViT_feature_num
self.pos_embedding_type = pos_embedding_type
self.all_attn = (self.pos_embedding_type == "sine-full")
self.ori_tokens = nn.Parameter(torch.zeros(1, self.num_ori_tokens, dim))
self._make_position_embedding(w, h, dim, pos_embedding_type)
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.dropout = nn.Dropout(emb_dropout)
self.inference_view = inference_view
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout, num_ori_tokens=num_ori_tokens,
all_attn=self.all_attn, show_attns=self.inference_view)
self.to_ori_token = nn.Identity()
self.to_dir_6_d = nn.Sequential(
nn.Linear(dim, 6)
)
def _make_position_embedding(self, w, h, d_model, pe_type='sine'):
'''
d_model: embedding size in transformer encoder
'''
assert pe_type in ['none', 'learnable', 'sine', 'sine-full']
if pe_type == 'none':
self.pos_embedding = None
print("==> Without any PositionEmbedding~")
else:
with torch.no_grad():
self.pe_h = h
self.pe_w = w
length = self.pe_h * self.pe_w
if pe_type == 'learnable':
self.pos_embedding = nn.Parameter(torch.zeros(1, self.num_patches + self.num_ori_tokens, d_model))
trunc_normal_(self.pos_embedding, std=.02)
print("==> Add Learnable PositionEmbedding~")
else:
self.pos_embedding = nn.Parameter(
self._make_sine_position_embedding(d_model),
requires_grad=False)
print("==> Add Sine PositionEmbedding~")
def _make_sine_position_embedding(self, d_model, temperature=10000,
scale=2 * math.pi):
h, w = self.pe_h, self.pe_w
area = torch.ones(1, h, w) # [b, h, w]
y_embed = area.cumsum(1, dtype=torch.float32)
x_embed = area.cumsum(2, dtype=torch.float32)
one_direction_feats = d_model // 2
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * scale
dim_t = torch.arange(one_direction_feats, dtype=torch.float32)
dim_t = temperature ** (2 * (dim_t // 2) / one_direction_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
pos = pos.flatten(2).permute(0, 2, 1)
return pos
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _init_weights(self, m):
print("Initialization...")
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def plot_sim_matrix(self, A, type="cos-similarity"):
"""
visualize the similarity matrix of orientation tokens
type: "softmax/cos-similarity"
"""
assert type == "softmax" or type == "cos-similarity", "please use correct type. (softmax/cos-similarity)"
if not os.path.exists('output/vis'):
os.makedirs('output/vis')
if type=="softmax":
in_pro = A.mm(A.T) / math.sqrt(A.shape[1])
prob = F.softmax(in_pro, dim=0)
fig = plt.figure()
sns.heatmap(prob, cmap='plasma')
fig.savefig("./output/vis/softmax_similarity_matrix_of_ori_tokens.png", bbox_inches='tight')
plt.show()
elif type=="cos-similarity":
a = (A / torch.norm(A, dim=-1, keepdim=True) )[0,...]
similarity = torch.mm(a, a.T)
fig = plt.figure()
sns.heatmap(similarity, cmap='plasma') # options: YlGnBu plasma
fig.savefig("./output/vis/cos_similarity_matrix_of_ori_tokens.png", bbox_inches='tight')
plt.show()
def forward(self, features, mask=None):
"""
feature extractor (ViT) -> add ori_tokens -> Orientation_Blocks -> outputs in all regions
"""
# show ori_tokens similarity matrix
if self.inference_view == True:
self.plot_sim_matrix(self.ori_tokens.cpu())
# transformer features
x = self.patch_to_embedding(features) # shape [batch_size, channel=197, dim=192]
b, n, _ = x.shape
# add learnable orientation tokens
ori_tokens = repeat(self.ori_tokens, '() n d -> b n d', b=b)
# add pos_embedding
if self.pos_embedding_type in ["sine", "sine-full"]:
x += self.pos_embedding[:, :n]
x = torch.cat((ori_tokens, x), dim=1)
elif self.pos_embedding_type == "learnable":
x = torch.cat((ori_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + self.num_ori_tokens)]
x = self.dropout(x)
# feature extractor (ViT) -> Orientation_Blocks
x = self.transformer(x, mask, self.pos_embedding)
# Orientation_Blocks -> outputs in all regions
dir_tokens = self.to_ori_token(x[:, 0:self.num_ori_tokens])
dir_6_d = self.to_dir_6_d(dir_tokens)
# convert to rotation matrices
batch_size, num_ori_tokens, d = dir_6_d.size()
x_reshaped = dir_6_d.view(-1, d)
ori_9_d = compute_rotation_matrix_from_ortho6d(x_reshaped)
# reshape to [batch_size, num_ori_tokens, 3d, 3d]
ori_9_d = ori_9_d.view(batch_size, num_ori_tokens, 3,3)
return ori_9_d
class TokenHPE(nn.Module):
def __init__(self, num_ori_tokens=9,
depth=12, heads=12, embedding='sine-full', ViT_weights='',
dim=128, mlp_ratio=3, inference_view=False
):
super(TokenHPE, self).__init__()
# Feature extractor (ViT)
# VisionTransformer implemented by rwightman:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# use vit_base_patch16_224_in21k
self.feature_extractor = VisionTransformer(
img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=None,
mlp_head=False,
)
# whether to use intermediate weights
if ViT_weights != "":
assert os.path.exists(ViT_weights), "weights file: '{}' not exist.".format(ViT_weights)
weights_dict = torch.load(ViT_weights, map_location="cuda")
# delete cls head weights
for k in list(weights_dict.keys()):
if "head" in k:
del weights_dict[k]
print("use pretrained feature extractor (ViT) weights!")
print(self.feature_extractor.load_state_dict(weights_dict, strict=False))
# Transformer blocks with orientation tokens
self.Ori_blocks = Orientation_Blocks(
num_ori_tokens=num_ori_tokens,
dim=dim,
ViT_feature_dim=768,
ViT_feature_num=197,
w=14,
h=14,
depth=depth,
heads=heads,
mlp_dim=dim * mlp_ratio,
pos_embedding_type=embedding,
inference_view=inference_view
)
self.mlp_head = nn.Sequential(
nn.Linear(num_ori_tokens*9, num_ori_tokens*27),
nn.Tanh(),
nn.Linear(num_ori_tokens*27, 6)
)
def forward(self, x):
"""
TokenHPE pipeline
feature extractor (ViT) -> Orientation_Blocks -> outputs in all regions
-> MLP head -> prediction: [pred, ori_9_d]
"""
# feature extractor (ViT)
x = self.feature_extractor(x) # outputs: [batch_size, channel=197, dim = 768]
# Orientation_Blocks
ori_9_d = self.Ori_blocks(x) # [batch_size, num_ori_tokens, 3d, 3d]
# feed to mlp head
x = rearrange(ori_9_d, 'batch oris d_1 d_2-> batch (oris d_1 d_2)')
x = self.mlp_head(x)
pred = compute_rotation_matrix_from_ortho6d(x)
return pred, ori_9_d