-
Notifications
You must be signed in to change notification settings - Fork 21
/
decoder.py
131 lines (109 loc) · 4.77 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
'''
Author: [email protected]
Date: 2021-09-17 23:30:48
LastEditTime: 2021-12-02 22:18:56
LastEditors: FCY
Description: decoder
FilePath: /compression/decoder.py
All rights reserved.
'''
#%%
import numpy as np
import torch
from tqdm import tqdm
from Octree import DeOctree, dec2bin
import pt
from dataset import default_loader as matloader
from collections import deque
import os
import time
from networkTool import *
from encoderTool import generate_square_subsequent_mask
from encoder import model,list_orifile
import numpyAc
batch_size = 1
bpttRepeatTime = 1
#%%
'''
description: decode bin file to occupancy code
param {str;input bin file name} binfile
param {N*1 array; occupancy code, only used for check} oct_data_seq
param {model} model
param {int; Context window length} bptt
return {N*1,float}occupancy code,time
'''
def decodeOct(binfile,oct_data_seq,model,bptt):
model.eval()
with torch.no_grad():
elapsed = time.time()
KfatherNode = [[255,0,0]]*levelNumK
nodeQ = deque()
oct_seq = []
src_mask = generate_square_subsequent_mask(bptt).to(device)
input = torch.zeros((bptt,batch_size,levelNumK,3)).long().to(device)
padinginbptt = torch.zeros((bptt,batch_size,levelNumK,3)).long().to(device)
bpttMovSize = bptt//bpttRepeatTime
# input torch.Size([256, 32, 4, 3]) bptt,batch_sz,kparent,[oct,level,octant]
# all of [oct,level,octant] default is zero
output = model(input,src_mask,[])
freqsinit = torch.softmax(output[-1],1).squeeze().cpu().detach().numpy()
oct_len = len(oct_data_seq)
dec = numpyAc.arithmeticDeCoding(None,oct_len,255,binfile)
root = decodeNode(freqsinit,dec)
nodeId = 0
KfatherNode = KfatherNode[3:]+[[root,1,1]] + [[root,1,1]] # for padding for first row # ( the parent of root node is root itself)
nodeQ.append(KfatherNode)
oct_seq.append(root) #decode the root
with tqdm(total= oct_len+10) as pbar:
while True:
father = nodeQ.popleft()
childOcu = dec2bin(father[-1][0])
childOcu.reverse()
faterLevel = father[-1][1]
for i in range(8):
if(childOcu[i]):
faterFeat = [[father+[[root,faterLevel+1,i+1]]]] # Fill in the information of the node currently decoded [xi-1, xi level, xi octant]
faterFeatTensor = torch.Tensor(faterFeat).long().to(device)
faterFeatTensor[:,:,:,0] -= 1
# shift bptt window
offsetInbpttt = (nodeId)%(bpttMovSize) # the offset of current node in the bppt window
if offsetInbpttt==0: # a new bptt window
input = torch.vstack((input[bpttMovSize:],faterFeatTensor,padinginbptt[0:bpttMovSize-1]))
else:
input[bptt-bpttMovSize+offsetInbpttt] = faterFeatTensor
output = model(input,src_mask,[])
Pro = torch.softmax(output[offsetInbpttt+bptt-bpttMovSize],1).squeeze().cpu().detach().numpy()
root = decodeNode(Pro,dec)
nodeId += 1
pbar.update(1)
KfatherNode = father[1:]+[[root,faterLevel+1,i+1]]
nodeQ.append(KfatherNode)
if(root==256 or nodeId==oct_len):
assert len(oct_data_seq) == nodeId # for check oct num
Code = oct_seq
return Code,time.time() - elapsed
oct_seq.append(root)
assert oct_data_seq[nodeId] == root # for check
def decodeNode(pro,dec):
root = dec.decode(np.expand_dims(pro,0))
return root+1
if __name__=="__main__":
for oriFile in list_orifile: # from encoder.py
ptName = os.path.basename(oriFile)[:-4]
matName = 'Data/testPly/'+ptName+'.mat'
binfile = expName+'/data/'+ptName+'.bin'
cell,mat =matloader(matName)
# Read Sideinfo
oct_data_seq = np.transpose(mat[cell[0,0]]).astype(int)[:,-1:,0]# for check
p = np.transpose(mat[cell[1,0]]['Location']) # ori point cloud
offset = np.transpose(mat[cell[2,0]]['offset'])
qs = mat[cell[2,0]]['qs'][0]
Code,elapsed = decodeOct(binfile,oct_data_seq,model,bptt)
print('decode succee,time:', elapsed)
print('oct len:',len(Code))
# DeOctree
ptrec = DeOctree(Code)
# Dequantization
DQpt = (ptrec*qs+offset)
pt.write_ply_data(expName+"/temp/test/rec.ply",DQpt)
pt.pcerror(p,DQpt,None,'-r 1',None).wait()